602 research outputs found
Recommended from our members
The impact of market and supply configurations on the costs of tendering in the construction industry
The cost of tendering in the construction industry is widely suspected to be excessive, but there is little robust empirical evidence to demonstrate this. It also seems that innovative working practices may reduce the costs of undertaking construction projects and the consequent improvement in relationships should increase overall value for money. The aim of this proposed research project is to develop mechanisms for measuring the true costs of tendering based upon extensive in-house data collection undertaken in a range of different construction firms. The output from this research will enable all participants in the construction process to make better decisions about how to select members of the team and identify the price and scope of their obligations
Recommended from our members
Developing a system for assessing the costs associated with different procurement routes in the construction industry
In developing techniques for monitoring the costs associated with different procurement routes, the central task is disentangling the various project costs incurred by organizations taking part in construction projects. While all firms are familiar with the need to analyse their own costs, it is unusual to apply the same kind of analysis to projects. The purpose of this research is to examine the claims that new ways of working such as strategic alliancing and partnering bring positive business benefits. This requires that costs associated with marketing, estimating, pricing, negotiation of terms, monitoring of performance and enforcement of contract are collected for a cross-section of projects under differing arrangements, and from those in the supply chain from clients to consultants, contractors, sub-contractors and suppliers. Collaboration with industrial partners forms the basis for developing a research instrument, based on time sheets, which will be relevant for all those taking part in the work. The signs are that costs associated with tendering are highly variable, 1-15%, depending upon what precisely is taken into account. The research to date reveals that there are mechanisms for measuring the costs of transactions and these will generate useful data for subsequent analysis
Exact eigenstate analysis of finite-frequency conductivity in graphene
We employ the exact eigenstate basis formalism to study electrical
conductivity in graphene, in the presence of short-range diagonal disorder and
inter-valley scattering. We find that for disorder strength, 5, the
density of states is flat. We, then, make connection, using the MRG approach,
with the work of Abrahams \textit{et al.} and find a very good agreement for
disorder strength, = 5. For low disorder strength, = 2, we plot the
energy-resolved current matrix elements squared for different locations of the
Fermi energy from the band centre. We find that the states close to the band
centre are more extended and falls of nearly as as we move away
from the band centre. Further studies of current matrix elements versus
disorder strength suggests a cross-over from weakly localized to a very weakly
localized system. We calculate conductivity using Kubo Greenwood formula and
show that, for low disorder strength, conductivity is in a good qualitative
agreement with the experiments, even for the on-site disorder. The intensity
plots of the eigenstates also reveal clear signatures of puddle formation for
very small carrier concentration. We also make comparison with square lattice
and find that graphene is more easily localized when subject to disorder.Comment: 11 pages,15 figure
Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits
The WWgamma triple gauge boson coupling parameters are studied using p-pbar
-> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were
collected with the DO detector from an integrated luminosity of 162 pb^{-1}
delivered by the Fermilab Tevatron Collider. The cross section times branching
fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV
and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum)
pb. The one-dimensional 95% confidence level limits on anomalous couplings are
-0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV
The cross section for the inclusive production of isolated photons has been
measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the
Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV
and have pseudorapidity |eta|<0.9. The cross section is compared with the
results from two next-to-leading order perturbative QCD calculations. The
theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
- …