3,549 research outputs found
Fluid models and simulations of biological cell phenomena
The dynamics of coated droplets are examined within the context of biofluids. Of specific interest is the manner in which the shape of a droplet, the motion within it as well as that of aggregates of droplets can be controlled by the modulation of surface properties and the extent to which such fluid phenomena are an intrinsic part of cellular processes. From the standpoint of biology, an objective is to elucidate some of the general dynamical features that affect the disposition of an entire cell, cell colonies and tissues. Conventionally averaged field variables of continuum mechanics are used to describe the overall global effects which result from the myriad of small scale molecular interactions. An attempt is made to establish cause and effect relationships from correct dynamical laws of motion rather than by what may have been unnecessary invocation of metabolic or life processes. Several topics are discussed where there are strong analogies droplets and cells including: encapsulated droplets/cell membranes; droplet shape/cell shape; adhesion and spread of a droplet/cell motility and adhesion; and oams and multiphase flows/cell aggregates and tissues. Evidence is presented to show that certain concepts of continuum theory such as suface tension, surface free energy, contact angle, bending moments, etc. are relevant and applicable to the study of cell biology
A note concerning topography and inertial currents
A simple steady dynamical model of inertial currents incorporating the effects of bottom topography is studied. The results of this analysis and those of preceding investigations indicate that topography may exert considerable influence on the structure of the Gulf Stream, on its separation point from the coastline, and on its subsequent meander pattern
Overcomplete steerable pyramid filters and rotation invariance
A given (overcomplete) discrete oriented pyramid may be converted into a steerable pyramid by interpolation. We present a technique for deriving the optimal interpolation functions (otherwise called 'steering coefficients'). The proposed scheme is demonstrated on a computationally efficient oriented pyramid, which is a variation on the Burt and Adelson (1983) pyramid. We apply the generated steerable pyramid to orientation-invariant texture analysis in order to demonstrate its excellent rotational isotropy. High classification rates and precise rotation identification are demonstrated
TandemNet: Distilling Knowledge from Medical Images Using Diagnostic Reports as Optional Semantic References
In this paper, we introduce the semantic knowledge of medical images from
their diagnostic reports to provide an inspirational network training and an
interpretable prediction mechanism with our proposed novel multimodal neural
network, namely TandemNet. Inside TandemNet, a language model is used to
represent report text, which cooperates with the image model in a tandem
scheme. We propose a novel dual-attention model that facilitates high-level
interactions between visual and semantic information and effectively distills
useful features for prediction. In the testing stage, TandemNet can make
accurate image prediction with an optional report text input. It also
interprets its prediction by producing attention on the image and text
informative feature pieces, and further generating diagnostic report
paragraphs. Based on a pathological bladder cancer images and their diagnostic
reports (BCIDR) dataset, sufficient experiments demonstrate that our method
effectively learns and integrates knowledge from multimodalities and obtains
significantly improved performance than comparing baselines.Comment: MICCAI2017 Ora
Mean zonal flows generated by librations of a rotating spherical cavity
Longitudinal librations represent oscillations about the axis of a rotating axisymmetric fluid-filled cavity. An analytical theory is developed for the case of a spherical cavity in the limit when the libration frequency is small in comparison with the rotation rate, but large in comparison with the inverse of the spin-up time. It is shown that longitudinal librations create a steady zonal flow through the nonlinear advection in the Ekman layers. The theory can be applied to laboratory experiments as well as to solid planets and satellites with a liquid core
Viscous spreading of an inertial wave beam in a rotating fluid
We report experimental measurements of inertial waves generated by an
oscillating cylinder in a rotating fluid. The two-dimensional wave takes place
in a stationary cross-shaped wavepacket. Velocity and vorticity fields in a
vertical plane normal to the wavemaker are measured by a corotating Particule
Image Velocimetry system. The viscous spreading of the wave beam and the
associated decay of the velocity and vorticity envelopes are characterized.
They are found in good agreement with the similarity solution of a linear
viscous theory, derived under a quasi-parallel assumption similar to the
classical analysis of Thomas and Stevenson [J. Fluid Mech. 54 (3), 495-506
(1972)] for internal waves
Self-consistent simulations of a von K\'arm\'an type dynamo in a spherical domain with metallic walls
We have performed numerical simulations of boundary-driven dynamos using a
three-dimensional non-linear magnetohydrodynamical model in a spherical shell
geometry. A conducting fluid of magnetic Prandtl number Pm=0.01 is driven into
motion by the counter-rotation of the two hemispheric walls. The resulting flow
is of von K\'arm\'an type, consisting of a layer of zonal velocity close to the
outer wall and a secondary meridional circulation. Above a certain forcing
threshold, the mean flow is unstable to non-axisymmetric motions within an
equatorial belt. For fixed forcing above this threshold, we have studied the
dynamo properties of this flow. The presence of a conducting outer wall is
essential to the existence of a dynamo at these parameters. We have therefore
studied the effect of changing the material parameters of the wall (magnetic
permeability, electrical conductivity, and thickness) on the dynamo. In common
with previous studies, we find that dynamos are obtained only when either the
conductivity or the permeability is sufficiently large. However, we find that
the effect of these two parameters on the dynamo process are different and can
even compete to the detriment of the dynamo. Our self-consistent approach allow
us to analyze in detail the dynamo feedback loop. The dynamos we obtain are
typically dominated by an axisymmetric toroidal magnetic field and an axial
dipole component. We show that the ability of the outer shear layer to produce
a strong toroidal field depends critically on the presence of a conducting
outer wall, which shields the fluid from the vacuum outside. The generation of
the axisymmetric poloidal field, on the other hand, occurs in the equatorial
belt and does not depend on the wall properties.Comment: accepted for publication in Physical Review
On the excitation of inertial modes in an experimental spherical Couette flow
Spherical Couette flow (flow between concentric rotating spheres) is one of
flows under consideration for the laboratory magnetic dynamos. Recent
experiments have shown that such flows may excite Coriolis restored inertial
modes. The present work aims to better understand the properties of the
observed modes and the nature of their excitation. Using numerical solutions
describing forced inertial modes of a uniformly rotating fluid inside a
spherical shell, we first identify the observed oscillations of the Couette
flow with non-axisymmetric, retrograde, equatorially anti-symmetric inertial
modes, confirming first attempts using a full sphere model. Although the model
has no differential rotation, identification is possible because a large
fraction of the fluid in a spherical Couette flow rotates rigidly. From the
observed sequence of the excited modes appearing when the inner sphere is
slowed down by step, we identify a critical Rossby number associated with a
given mode and below which it is excited. The matching between this critical
number and the one derived from the phase velocity of the numerically computed
modes shows that these modes are excited by an instability likely driven by the
critical layer that develops in the shear layer staying along the tangent
cylinder of the inner sphere.Comment: 11 pages, 17 figure
Recommended from our members
Breastfeeding and timing of pubertal onset in girls: a multiethnic population-based prospective cohort study.
BackgroundEarly puberty is associated with higher risk of adverse health and behavioral outcomes throughout adolescence and adulthood. US girls are experiencing earlier puberty with substantial racial/ethnic differences. We examined the association between breastfeeding and pubertal timing to identify modifiable risk factors of early puberty and potential sources of racial/ethnic differences in the timing of pubertal development.MethodsA prospective cohort study of 3331 racially/ethnically diverse girls born at Kaiser Permanente Northern California (KPNC) between 2004 and 06. All data were obtained from KPNC electronic clinical and administrative datasets. Mother-reported duration of breastfeeding was obtained from questionnaires administered at each 'well-baby' check-up exam throughout the baby's first year and categorized as 'Not breastfed', 'Breastfed < 6 months', and 'Breastfed ≥ 6 months'. Pubertal development data used Tanner stages assessed by pediatricians during routine pediatric checkups starting at age 6. Pubertal onset was defined as transition from Tanner Stage 1 to Tanner Stage 2+ for breast (thelarche) and pubic hair (pubarche). Weibull regression models accommodating for left, right, and interval censoring were used in all analyses. Models were adjusted for maternal age, education, race/ethnicity, parity and prepubertal body mass index (BMI). We also examined race/ethnicity as a potential effect modifier of these associations.ResultsNot breastfeeding was associated with earlier onset of breast and pubic hair development compared to breastfeeding ≥6 months (adjusted hazard ratio [HR]: 1.25; 95% confidence interval [CI]: 1.07-1.46; HR: 1.24; 95% CI: 1.05-1.46, respectively). Breastfeeding for < 6 months was also associated with the risk of earlier pubic hair development (HR: 1.14; 95% CI: 1.00-1.30, compared to breastfeeding ≥6 months). Inclusion of girls' prepubertal BMI slightly attenuated the association between breastfeeding and timing of breast onset but remained significant. The association between not breastfeeding and early breast development may be stronger among African American girls (HR: 1.92; 95% CI: 1.01-3.66, no breastfeeding vs. ≥6 months) than other racial/ethnic groups.ConclusionsBreastfeeding is an independent predictor of pubertal onset in girls, and the strength of the association may vary by race/ethnicity. Providing breastfeeding support and lactation education for high risk mothers may help prevent earlier pubertal onset and promote positive health outcomes later in life
Image enhancement by non-linear extrapolation in frequency space
An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures
- …