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August 21, 2012

Abstract

We have performed numerical simulations of boundary-driven dynamos
using a three-dimensional non-linear magnetohydrodynamical model in a
spherical shell geometry. A conducting fluid of magnetic Prandtl num-
ber Pm = 0.01 is driven into motion by the counter-rotation of the two
hemispheric walls. The resulting flow is of von Kármán type, consist-
ing of a layer of zonal velocity close to the outer wall and a secondary
meridional circulation. Above a certain forcing threshold, the mean flow
is unstable to non-axisymmetric motions within an equatorial belt. For
fixed forcing above this threshold, we have studied the dynamo properties
of this flow. The presence of a conducting outer wall is essential to the
existence of a dynamo at these parameters. We have therefore studied the
effect of changing the material parameters of the wall (magnetic perme-
ability, electrical conductivity, and thickness) on the dynamo. In common
with previous studies, we find that dynamos are obtained only when ei-
ther the conductivity or the permeability is sufficiently large. However,
we find that the effect of these two parameters on the dynamo process
are different and can even compete to the detriment of the dynamo. Our
self-consistent approach allow us to analyze in detail the dynamo feedback
loop. The dynamos we obtain are typically dominated by an axisymmet-
ric toroidal magnetic field and an axial dipole component. We show that
the ability of the outer shear layer to produce a strong toroidal field de-
pends critically on the presence of a conducting outer wall, which shields
the fluid from the vacuum outside. The generation of the axisymmetric
poloidal field, on the other hand, occurs in the equatorial belt and does
not depend on the wall properties.

1 Introduction

An electrically conducting fluid driven by viscous forcing exerted at a boundary
generates a dynamo if the fluid’s magnetic properties – electrical conductivity
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and magnetic permeability – and flow properties can amplify an initial weak
magnetic field and ultimately sustain a magnetic field of significant amplitude.
This is the most efficient type of forcing to convert the power applied to the
system into kinetic energy available for the dynamo, and so is preferred in
laboratory experiments designed to study dynamo action, such as liquid metal
experiments. In most of these experiments the energy injection scale is the
largest scale of the system.

Recently, results from a boundary-driven dynamo experiment, the von Kár-
mán Sodium (VKS) experiment located in Cadarache, France, have shown that
the magnetic properties of the boundaries also greatly affect the ability of the
flow to maintain a dynamo (Monchaux et al., 2007). The VKS experiment
consists of a cylindrical container filled with liquid sodium, with two counter-
rotating impellers at either end. The mechanical forcing exerted by the im-
pellers on the liquid sodium drives a highly turbulent flow. For a sufficiently
strong mechanical forcing, dynamo action has been observed that sustains a
large-scale magnetic field despite the unconstrained and turbulent nature of the
flow. Furthermore, the axisymmetry of the sustained magnetic field (an axial
dipole) implies that the turbulent motions are involved in the dynamo process
(e.g. Pétrélis et al., 2007). This is an important result in the study of natural
dynamos, which operate at very large Reynolds numbers, and mostly produce
large-scale magnetic fields. However, dynamo action is only observed in the VKS
experiment when the impellers are made of soft iron – a material with high mag-
netic permeability, which produces a discontinuity in the magnetic field between
the fluid and the impellers. At the highest achievable mechanical forcing in the
experiment, dynamo action has never been observed with either stainless steel
or copper impellers (Aumâıtre et al., 2008). Consequently, elucidating the effect
of changes of magnetic permeability of the impellers on the dynamo, and more
generally of magnetic boundary conditions, is critical to understanding how the
dynamo mechanism operates in the VKS dynamo experiment. This problem is
also crucial in other shear-driven systems, such as the plasma Couette exper-
iment in Madison, Wisconsin (Spence et al., 2009), and the spherical Couette
liquid sodium experiment in College Park, Maryland (Zimmerman et al., 2011).

The effect of magnetic boundary conditions on dynamo action has been in-
vestigated in numerical simulations for both von Kármán type flow (between
coaxial rotating disks) and Ponomarenko type flow (cylindrical helical flow)
(Ponomarenko, 1973). Unfortunately, computational limitations prevent nu-
merical simulations from reproducing the same level of turbulence obtained in
laboratory experiments. Numerical models include the large-scale mean veloc-
ity component, and sometimes smaller scales with typical viscous length scales
much larger than natural or experimental dynamos due to the use of unrealisti-
cally high viscosity. Many studies have adopted a kinematic dynamo approach
in which the flow is prescribed for all time with no back-reaction from the mag-
netic field. The imposed mean base flow in these kinematic models can be cho-
sen analytically (Kaiser and Tilgner, 1999; Avalos-Zuniga et al., 2003; Gissinger
et al., 2008; Gissinger, 2009; Giesecke et al., 2010) or based on data from labo-
ratory water experiments (Marié et al., 2003; Ravelet et al., 2005; Stefani et al.,
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2006; Laguerre et al., 2008). Some authors adopt a mean-field approach and
parametrize the effects of small-scale turbulence through an α-effect, which cor-
responds to a mean electromotive force that is linear and homogeneous in the
large-scale magnetic field (Avalos-Zuniga et al., 2003; Laguerre et al., 2008;
Giesecke et al., 2010). A small number of studies use computationally expen-
sive 3D self-consistent models where the velocity is produced by boundary or
volume forcing, and the magnetic feedback on the flow is taken into account
(Bayliss et al., 2007; Gissinger et al., 2008; Reuter et al., 2011), but to our
knowledge, only Roberts et al. (2010) have addressed the problem of magnetic
boundary conditions via self-consistent numerical simulations.

All previous numerical studies, using either the mean base flow only, the
mean field approach, or 3D self-consistent models, found that enhanced electrical
conductivity or magnetic permeability of either the container walls or impellers
lead to a reduction of the dynamo threshold measured by a critical magnetic
Reynolds number (where the magnetic Reynolds number corresponds to the
ratio of magnetic induction over magnetic diffusion). Avalos-Zuniga et al. (2003)
attribute the reduction of the dynamo threshold to a change in geometry of the
electric current lines or the magnetic field lines leading to a reduction of the total
ohmic dissipation. Giesecke et al. (2010) alternatively invoke the reduction of the
“effective”magnetic diffusivity, that is the magnetic diffusivity averaged over the
whole volume of the system, although they acknowledge that this argument does
not explain why different magnetic field growth rates are obtained when varying
individually either the magnetic permeability or the electrical conductivity of
the disks. Pétrélis et al. (2007) argue that the refraction of the magnetic field
lines in the soft iron disks (due to the discontinuity of the tangential magnetic
field) may act as a shield for the fluid dynamo region between the two disks
from the region behind the disks. Indeed, Stefani et al. (2006) have shown that
the motions of liquid sodium in the region behind the disks is detrimental for
the dynamo action in kinematic simulations. Roberts et al. (2010) show that
finite values of the wall conductance promote dynamo action even when the
wall permeability tends to zero. When the wall conductance tends to zero, on
the other hand, their model fails to produce a dynamo even for infinite wall
permeability. Kaiser and Tilgner (1999) find that a surrounding wall of the
same conductivity as the fluid favors dynamo action up to an optimal thickness.
In this case, the ohmic dissipation in the fluid decreases as the electric currents
diffuse into the wall. However, they show that thicker walls are detrimental to
dynamos that produce time-dependent magnetic field because the skin effect
leads to the presence of eddy currents in the wall, and so the ohmic dissipation
increases in this case. In an experimental setup similar to VKS but using gallium
as working fluid (which has a lower conductivity than sodium and thus a lower
magnetic Reynolds number) and applying transverse magnetic fields, Verhille
et al. (2010) find that the induced axial magnetic field measured in the mid
equatorial plane is two to three times larger in magnitude when soft iron disks
are used compared to copper or stainless steel disks. They argue that this result
(among other observations) is consistent with an induction mechanism in the
rotating disks amplified by the distortion of the magnetic field lines by the soft
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iron.
In general, in boundary-driven system, some essential component of the dy-

namo likely operates close to the boundaries, so it is perhaps not surprising
that changing the magnetic boundary conditions significantly affects the dy-
namo threshold. Nevertheless, the current physical interpretations of the exper-
imental observations are partly based on assumptions about the flow properties
in kinematic dynamo models, and have not been demonstrated in self-consistent
models. Moreover, the cylindrical geometry of the VKS experiment makes it
difficult to implement realistic boundary conditions numerically, which has led
some authors to adopt idealized boundary conditions (e.g. infinite magnetic
permeability which implies vanishing tangential magnetic field at the bound-
ary) (Gissinger et al., 2008; Laguerre et al., 2008).

Here we investigate the underlying problem of the role of magnetic boundary
conditions in dynamo models through self-consistent three-dimensional magne-
tohydrodynamical numerical simulations in spherical shell geometry. Our study
extends and expands on the work of Roberts, Glatzmaier, and Clune (2010)
(RGC10 hereafter) who used the boundary forcing exerted by the counter-
rotation of the two hemispheric outer walls to drive a mean flow in a spherical
cavity. In their study, RGC10 use a thin wall boundary condition which im-
plies that the magnetic field in the outer wall instantly responds to a change
of magnetic field in the fluid. However the conditions under which the thin
wall limit is appropriate for modeling the experimental setup are unclear. Here,
we investigate in more details the role of the outer wall by modeling a wall of
finite thickness and finite values for the electrical conductivity and magnetic
permeability. The model is self-consistent in the sense that the flow produced
by the motions of the rotating boundaries can be adjusted by the Lorentz forces
of the sustained magnetic field. Furthermore, no parameterization of the tur-
bulent effects are included in the equations. For fixed forcing and magnetic
properties of the fluid, we have examined the effects of varying the properties
of the wall (magnetic permeability µw, electrical conductivity σw, and thickness
h) on the resultant dynamo. Spherical geometry has the advantage that mag-
netic boundary conditions can be easily implemented using a toroidal-poloidal
decomposition for the magnetic field. The spherical geometry is convenient to
study magnetohydrodynamical (MHD) problems numerically but prevents us
from studying the exact same flow obtained in the cylindrical VKS experiment.
Moreover, the impellers in the VKS experiment consist of flat disks upon which
eight curved blades are attached. The effects of the blades on the flow are not
reproduced in our numerical setup. Therefore the application of our results to
the VKS experiment will remain tentative.

2 Model

The model setup is sketched in Figure 1. We use spherical coordinates (r, θ, φ)
with r the radius, θ the colatitude and φ the azimuth. An electrically conducting
incompressible fluid fills the spherical shell between the inner radius ri and the
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Figure 1: Schematic 3D view of the setup. Within the wall, the shading repre-
sents the absolute value of the angular velocity |Ωw| = Uw| cos θ|/ro, maximum
at the poles and zero at the equator.

outer radius ro. The fluid has viscosity ν, density ρ, electrical conductivity σf ,
and its magnetic permeability is equal to the vacuum magnetic permeability,
µ0. All the properties of the fluid are constant in the volume and are not varied
throughout the MHD study. The solid outer wall is modelled by a spherical
shell of finite thickness h which rotates with angular velocity

Ωw(θ) = Uw cos θ/ro, (1)

where Uw is a constant forcing velocity. Northern and Southern hemispheres
therefore rotate at the same rate but in opposite directions. Note that the wall is
“solid” in the sense that it is not fluid, but the angular velocity profile (1) varies
with latitude and so a shear is present in the wall. We impose impenetrable
and no-slip boundary conditions on the fluid at r = ro, and so the wall exerts a
viscous stress on the fluid. The wall has electrical conductivity σw and magnetic
permeability µw. At the outer boundary of the wall, r = ro + h, we impose a
vacuum boundary condition corresponding to zero electric current for r > ro+h.

Within the fluid, we solve the momentum equation for an incompressible
fluid and the magnetic induction equation:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u+

1

ρ
j×B, (2)

∇ · u = 0, (3)

∂B

∂t
= ∇× (u×B)−∇× 1

σf
∇× B

µ0

, (4)

∇ ·B = 0, (5)

where u is the velocity, p is the pressure, and B is the magnetic field. Within
the wall, we solve the magnetic induction equation with only the prescribed
velocity for the wall uφ(θ, r) = Ωw(θ)r sin θ where Ωw is given by Equation (1).
More details about the implementation of the induction in the wall are given
in Appendix A. For numerical convenience a solid inner core is present between
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r = 0 and r = ri = 0.2ro. The inner core is held at rest and has the same electri-
cal conductivity and magnetic permeability as the fluid. We solve the magnetic
induction equation within the inner core with zero velocity. The boundary con-
ditions for the velocity at r = ri are no-slip and impenetrable.

The equations are solved in non-dimensional form. The length scale is the
outer radius ro; the velocity is scaled by the forcing velocity Uw; the time is
scaled by ro/Uw; the magnetic field is scaled by

√
ρµ0Uw. The dimensionless

parameters for the fluid are the magnetic Prandtl number:

Pmf = µ0σfν, (6)

and the Reynolds number, which is a measure of the forcing strength:

Re =
Uwro
ν

. (7)

The dimensionless parameters for the wall are the wall thickness ĥ = h/ro,
the relative conductivity σr = σw/σf , and the relative magnetic permeability
µr = µw/µ0.

At the fluid-wall interface, the boundary conditions for the normal and tan-
gential components of the magnetic field and electric current density, j = ∇× µ−1B,
are:

Bw · er = Bf · er, (8)

Bw × er = µrBf × er, (9)

jw · er = jf · er, (10)

jw × er = σrjf × er, (11)

where the subscripts f and w indicate the field on the side of the fluid and
wall respectively. Therefore a jump of magnetic permeability, µr 6= 1, implies
a discontinuity of the tangential magnetic field whereas a jump of electrical
conductivity, σr 6= 1, implies a discontinuity of the tangential electric currents,
and hence a discontinuity in the radial derivatives of the tangential magnetic
components.

For this study, we have modified the fully three-dimensional and non-linear
PARODY code that was designed to solve magnetohydrodynamic problems in
spherical geometry. The modification includes the addition of an outer wall of fi-
nite thickness and finite magnetic properties. The code was originally written by
Dormy et al. (1998), and subsequently parallelized and optimized by J. Aubert
and E. Dormy. The code was previously benchmarked against 5 independent
numerical codes used in the geophysical and astrophysical dynamo community
(Christensen et al., 2001). The velocity and magnetic fields are decomposed into
poloidal and toroidal scalars, which are then expanded in spherical harmonics
Y m
l in the angular coordinates with l representing the latitudinal degree and

m the azimuthal order. A second-order finite difference scheme is used on an
irregular radial grid (finer near the boundaries, using a geometrical progression
for the radial increment). A Crank-Nicolson scheme is implemented for the time
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integration of the diffusion terms and an Adams-Bashforth procedure is used for
the other terms. The poloidal-toroidal decomposition and the spherical geom-
etry allow a relatively simple implementation of the magnetic boundary condi-
tions. A detailed description of the implementation of the magnetic boundary
conditions in the code is given in Appendix A.

The typical resolution is 400 radial points in the fluid, between 20 and 50
radial points in the wall depending on the wall parameters, 15 radial points in
the inner core, lmax = 160 degrees and mmax = 48 orders of spherical harmonics.
We have verified that the kinetic and magnetic energy spectra in l andm are well
resolved (see Figures 3(d), 7 and 10(c)), and that a finer radial resolution does
not change the numerical solution significantly. All the simulations presented in
this paper have reached a statistically stationary state in which the kinetic and
magnetic energies are roughly constant in time.

The relations between spherical components and poloidal-toroidal compo-
nents are given in Appendix A. In the following sections, poloidal and toroidal
scalars of a vector B are denoted BP and BT and the radial, latitudinal and
azimuthal components Br, Bθ and Bφ respectively. For an axisymmetric field
(corresponding to m = 0 in spectral space) the toroidal component is related to
the azimuthal component, directed East-West, and the poloidal component is
related to the radial and latitudinal components, enclosed in a meridional plane.
Azimuthal averages are denoted by an overbar.

3 Results

First, in Section 3.1, we present hydrodynamic simulations without magnetic
field for different values of the boundary forcing in order to study the underlying
flow in the system. The rest of the paper then focuses on the results from full
MHD simulations run at a fixed forcing. Sections 3.2 and 3.3 describe the
dynamo onset and some general features of the self-sustained magnetic field. In
Section 4, we investigate the details of the dynamo process and discuss the role
of the magnetic properties of the wall.

3.1 Hydrodynamics

The axisymmetric viscous forcing exerted by the outer boundary on the fluid
drives a zonal (i.e. axisymmetric and azimuthal) velocity, uφ. For small Reynolds
numbers (e.g. Re = 300 in Figure 2(a)), the zonal velocity extends into the
bulk of the fluid whereas for large Re (e.g Re = 48193 in Figure 2(b)), the
zonal flow is confined to a narrow layer close to the outer boundary. Within
this layer at large Re, radial gradients of uφ are large at all latitudes except in
the equatorial region, where latitudinal gradients are largest. The differential
rotation in the viscous boundary layer pumps a meridional (i.e. axisymmetric
and poloidal) circulation consisting of two counter-rotating cells with an inward
radial velocity in the equatorial plane (Figure 2). The viscous boundary layer
is analogous to an Ekman boundary layer commonly found in rotating flows,
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Figure 2: Axisymmetric flow in a meridional plane for different Reynolds num-
bers in the statistically steady state. The left panel (close-up of the outer
boundary layer) and left half of the meridional plane show the zonal velocity
uφ (black: positive; gray: negative). The right half of the meridional plane
shows the axisymmetric poloidal streamlines (corresponding to upol = (ur, uθ))
with constant contour interval. Extremum values for the axisymmetric velocity
are (in units of Uw): for Re = 300: ur ∈ [−0.095, 0.090], uθ ∈ [−0.09, 0.09], and
uφ ∈ [−0.50, 0.50]; for Re = 48193, ur ∈ [−0.023, 0.011], uθ ∈ [−0.10, 0.10], and
uφ ∈ [−0.50, 0.50].

and the pumping of the meridional circulation is analogous to Ekman pumping
(Greenspan, 1968). The thickness of the Ekman layer scales as δ ∝ Re−1/2 in
our dimensionless units. Hence a thinner viscous boundary layer is observed
for large Reynolds number. The viscous timescale is τν = Re, and the spin-up
timescale is τΩ = Re1/2 in dimensionless units (Greenspan, 1968). The spin-up
timescale corresponds to the typical timescale to establish the meridional cir-
culation, which transports angular momentum between the viscous boundary
layer and the bulk of the fluid. For large Reynolds numbers, or equivalently
low viscosity, the meridional circulation establishes a steady state much more
rapidly than by viscous diffusion alone. For example at Re = 48193, the hydro-
dynamic simulation has been run for about 4 τΩ, corresponding to a few percent
of a viscous timescale. After a short initial transition phase (lasting about 50
time units), the kinetic energy reaches a constant average value and no further
spreading of the viscous boundary layer is observed. Since the upper and lower
hemisphere rotates at opposite rotation rate, we expect the bulk of the fluid to
have zero angular velocity as observed for Re = 48193.

The latitudinal profile of uφ imposed at the boundary displays an inflection
point at the equator. Consequently, for small enough viscosity, the steady ax-
isymmetric base flow is prone to shear instabilities according to the Rayleigh
instability criterion for shear flows (e.g. Drazin and Howard, 1966). Based on
numerical simulations, we have determined that a non-axisymmetric component
of the flow first appears at a critical Reynolds number 200 < Rec < 250. The
most unstable mode at Re = 250 has the azimuthal symmetry m = 2 and con-
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Figure 3: (a) and (b) Isodensity surface of kinetic energy of the non-
axisymmetric components (20% (Re = 300) and 15% (Re = 48193) of the
maximum). (c) Azimuthal and time average of the non-axisymmetric rms ve-
locity (

√

(|u| − |u|)2) for Re = 48193 in units of Uw. (d) Kinetic energy spec-
trum for azimuthal modes in the toroidal component (black circles) and in the
poloidal component (gray squares) for Re = 48193. The kinetic energy has been
averaged in time and over the whole volume.
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sists of vortices located around the equatorial plane (Figure 3(a)). In a similar
von Kármán flow in cylindrical geometry, Nore et al. (2003) argued that the
first non-axisymmetric instability of the equatorial shear layer of the basic flow
is similar to a Kelvin-Helmoltz instability.

For Re = 48193, which is about 200 times larger than the critical Reynolds
number, the non-axisymmetric flow is still mostly located in the outer equa-
torial region, which we call the equatorial belt (Figures 3(b) and 3(c)). On
average, the energy of the non-axisymmetric flow is symmetric with respect to
the equatorial plane. The mean non-axisymmetric velocity tends to zero on
a long time average. The mean flow is therefore purely axisymmetric. For
this Reynolds number, kinetic energy is found in all azimuthal modes, but
the m = 2, 4, 6 modes have significantly larger amplitude than the other non-
axisymmetric modes (Figure 3(d)). For m > 8 the spectrum approximately fol-
lows a m−3 power law. Note that kφ = m/(r sin θ) corresponds to the azimuthal

wavenumber and kH =
√

l(l + 1)/r ≈ (l + 1/2)/r is the horizontal wavenumber
on a spherical surface (Backus et al., 1996). In our numerical simulation at
Re = 48193, the kinetic energy spectrum in l also follows a l−3 power law at
small scales. This result is somewhat unexpected for 3D turbulence at small
scales in these types of flows, for which the latest theoretical predictions and
experimental results (albeit performed in cylindrical geometry) obtain spatial
kinetic spectra exhibiting a k−2 slope when the cascade is non-local at small
scales (Herbert et al., 2012). A k−3 spectrum is more generally associated with
quasi-2D turbulence, which could speculatively be argued here but is not obvi-
ously the case.

We define a local Reynolds number, Rel = (u∗π/m)Re where u∗(m) is the
dimensionless rms velocity for a mode m, as a measure of the local ratio of
the non-linear inertial terms to the viscous terms. The viscous scale, defined
as the scale for which Rel ≈ 1, is m = 43. For the MHD simulations presented
in the next sections, the magnetic diffusive scale, defined for a local magnetic
Reynolds number of the conducting fluid of order unity, Rml = PmfRel = 1, is
m = 5 (Pmf = 0.01).

The mean kinetic energy as a function of the forcing Reynolds number
is shown in Figure 4(a). The dimensionless kinetic energy decreases as the
Reynolds number increases, implying that either the laminar or the turbulent
viscous dissipation increases. Note that the dimensional kinetic energy increases
with the forcing but the flow amplitude does not scale linearly with the forc-
ing. In Figure 4(b), we plot the ratio of non-axisymmetric to zonal kinetic
energies (volume-averaged) in function of Re. As expected, the ratio increases
with the forcing for Re > Rec but then saturates for Re > 5000 at a value of
about 37%. We interpret this result as a consequence of the location of the
non-axisymmetric motions in the equatorial belt, where latitudinal gradients of
uφ are large. The zonal kinetic energy remains mostly confined to the narrow
laminar viscous boundary layer at higher latitudes (see Figure 2(b)). Therefore
the non-axisymmetric flow only drains part of the zonal kinetic energy, even at
large Re.

10



10
2

10
3

10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

 

 

tot

m=0

m>0

E
k
in
(ρ
U

2 w
)

Re

(a)

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

E
m
>
0

k
in

/E
to
r,
m
=
0

k
in

Re

(b)

Figure 4: (a) Kinetic energy contained in the total flow (+), in the axisymmetric
flow (©) and in the non-axisymmetric flow (�) for different Reynolds numbers.
(b) Ratio of non-axisymmetric to zonal kinetic energy for different Reynolds
numbers. The kinetic energy is averaged in time and over the whole volume of
the fluid.

3.2 Dynamo onset in the parameter space

The MHD simulations presented in this paper have been run with fixed Reynolds
number Re and fixed fluid properties (magnetic permeability, electrical conduc-
tivity and viscosity). We vary only the properties of the outer wall. To compare
our results with RGC10, we use the same magnetic Prandtl number for the fluid,
Pmf = µ0σfν = 0.01. Our forcing at Re = 48193, about 200 times critical, cor-
responds to Uw = 80m/s with ro = 0.5m and ν = 8.3× 10−4m2/s in RGC10.
The magnetic Reynolds number of the fluid based on the forcing velocity at
large scale is then Rmf = RePmf = 482. At these parameters, RGC10 obtained
a dynamo if either the electrical conductivity and/or the magnetic permeability
of the wall were made sufficiently large. To investigate the role of the wall on
dynamo action, we vary the wall’s thickness h, relative magnetic permeability
µr, and electrical conductivity σr. The magnetic field is initialized with both a
weak tilted dipole component and a weak axial quadrupole component, with a
ratio of magnetic energy to kinetic energy of about 10−5.

Figure 5 presents the results in the parameter space (σr, µr) where σr and

µr are varied independently, and for two different wall thickness ĥ = 0.1 and
ĥ = 0.01. We consider that a dynamo is in existence when the magnetic energy
in the fluid stabilizes to a stationary value for several global magnetic diffusion
times in the fluid, τf = Rmf in dimensionless units. When the global magnetic

diffusion time of the wall τw = ĥ2σrµrRmf is larger than τf , the simulation

must be run for at least one time τw. For instance, the case ĥ = 0.1, σr = 1 and
µr = 1000 has been run for a time τw = 10τf .

For an homogeneous system (µr = 1 and σr = 1), the flow is unable to gen-
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Figure 5: Results of MHD simulations in the parameter space (σr, µr) for

two different wall thickness ĥ. The black symbols are simulations presented in
this study. The gray symbols are simulations from RGC10. The dotted lines
corresponds to constant magnetic diffusivities in the wall ηw = 1/(µwσw).
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erate a dynamo for ĥ = 0.1 and ĥ = 0.01.
For ĥ = 0.1 (Figure 5(a)), an increase of the wall conductivity by a factor

10 while keeping µr = 1 leads to dynamo action. An increase of the wall per-
meability by a factor 1000 is necessary to obtain dynamo action while keeping
σr = 1. In this respect a large wall conductivity is more favorable for dynamo
action than a large wall permeability. The boundary between dynamo and non-
dynamo in the (σr, µr) space does not follow a line of constant magnetic diffu-
sivity of the wall, ηw = 1/(µwσw) (dotted lines in Figure 5); therefore the effect
of the wall on the dynamo mechanism cannot be understood purely in terms of
magnetic diffusivity. Moreover, the loss of dynamo action from (σr, µr) = (10, 1)
to (σr, µr) = (10, 10) suggests that the effects of moderate wall conductivity and
permeability act in competition and lead to the dynamo suppression. The effects
of σr and µr on the dynamo process must therefore be considered separately.

For ĥ = 0.01 (Figure 5(b)), larger values of σr and µr are necessary to obtain

dynamo action in comparison to ĥ = 0.1. For µr = 1, an increase of the wall
conductivity to σr = 50 is necessary to obtain a dynamo. For the large perme-
ability case, µr = 1000, high values of the wall conductivity, at least σr = 20
are still required for dynamo action. An increase of the wall thickness therefore
appears to promote dynamo action (at least from ĥ = 0.01 to 0.1). Again, we
observe competing effects between moderate values of both wall conductivity
and permeability: the case (σr, µr) = (50, 100) fails to produce a dynamo unlike
the case (σr, µr) = (50, 10).

In the thin-wall limit of RGC10, the controlling parameters are the integrated
conductivity over the wall thickness, ĥσr and the integrated permeability ĥµr.
Their results are shown in Figure 5 with gray symbols. For ĥ = 0.1, the case
(σr, µr) = (2, 100) fails to produce a dynamo in our study whereas RGC10 ob-

tained a dynamo. However for ĥ = 0.01, our results are in agreement with the
results of RGC10, implying that the thin-wall limit may be considered reason-
ably valid up to a wall thickness equal to 1% of the outer radius but is not valid
all the way up to 10% relative thickness.

We have re-run the dynamo case (ĥ, σr, µr) = (0.1, 10, 1) as a kinematic dy-
namo. We take the time-average of the velocity over 700 rotation periods and
then solve the induction equation with this prescribed velocity. The flow is
predominantly axisymmetric, but also contains weak non-axisymmetric compo-
nents, which are not coherent structures but rather the result of inadequate
averaging. We find that this flow is unable to generate a dynamo, proving that
a key ingredient of the dynamo comes from the fluctuating part of the flow.

Finally, a brief search shows no evidence for subcritical dynamos. For in-
stance, when the magnetic field from the case (ĥ, σr, µr) = (0.1, 10, 1) is used as

initial condition for the case (ĥ, σr, µr) = (0.1, 1, 1) the dynamo dies.

3.3 General characteristics of the magnetic field

Figure 6 shows time series of the kinetic and magnetic energies of three cases – a
non-dynamo, (ĥ, σr, µr) = (0.1, 1, 1), and two dynamos, (0.1, 10, 1) and (0.1, 1, 1000).
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Figure 6: Time series of the kinetic (solid gray) and magnetic (toroidal: solid
black and poloidal: dashed black) energies for three simulations with different

wall magnetic properties and ĥ = 0.1. A global magnetic diffusion time in
the fluid τf corresponds to 482 time units. Kinetic and magnetic energy are
averaged over the whole volume of the fluid.

Close to the dynamo onset, the sustained magnetic energy is about 20% of the
averaged kinetic energy. The most supercritical dynamo that we calculated
((ĥ, σr, µr) = (0.1, 100, 1)) produces an averaged magnetic energy about 30% of
the kinetic energy. A comparison of energy spectra shows that the magnetic
energy is smaller than the kinetic energy at all scales. The kinetic energy value
is not significantly modified in the saturated phase of the dynamo. In the case
(ĥ, σr, µr) = (0.1, 10, 1), the kinetic energy increases initially as the magnetic
field grows to larger values than its saturated value (t < 500 in Figure 6(b))
but then returns to similar values as in the non-magnetic simulation once the
magnetic field saturates to smaller values. Plots of either axisymmetric or non-
axisymmetric flow and kinetic energy spectra do not show visible differences in
the non-dynamo and dynamo cases.

The magnetic field is mostly an axisymmetric toroidal field (about 80% of the
total magnetic energy). Figure 7 shows poloidal magnetic energy spectrum for

the cases (ĥ, σr, µr) = (0.1, 10, 1) and (ĥ, σr, µr) = (0.1, 1, 1000). The poloidal
field is mostly dipolar (l = 1). In all cases, the dipole is mainly axial and does
not reverse polarity. We obtained very similar results for the magnetic field
generated with a thin wall, ĥ = 0.01. Consequently, in the rest of the paper, we
only describe the analysis of the results for the case ĥ = 0.1.

The characteristics of the axisymmetric magnetic field are in good agree-
ment with the results described in RGC10. We can also compare the topology
of the self-sustained magnetic field in our work with other studies of von Kár-
mán flows and the self-consistent generation of dynamos (Bayliss et al., 2007;
Gissinger et al., 2008; Reuter et al., 2011) although they have not addressed
the role of magnetic boundary conditions. These authors use spherical geome-
tries and a volume forcing to mimic the role of disks rather than a boundary
forcing. They find dynamos without the presence of a conducting wall between
the outer sphere and the vacuum, but these dynamos only operate at larger

14



10
0

10
1

10
2

10
(12

10
(11

10
(10

10
(9

10
(8

10
(7

10
(6

 

 

«
r
=10 !

r
=1

«
r
=1 !

r
=1000

E
m
ag
(ρ
U

2 w
)

l

Figure 7: Poloidal magnetic energy spectra as a function of harmonic degree l
for (σr, µr) = (10, 1) (black circles) and (σr, µr) = (1, 1000) (gray squares) and

for ĥ = 0.1. The magnetic energy has been averaged in time and over the whole
volume of the fluid.

magnetic Prandtl numbers than considered in this paper. Bayliss et al. (2007)
and Gissinger et al. (2008) also obtain an axisymmetric magnetic field (mainly
an axial dipole for the poloidal part) when the flow has a non-axisymmetric
component and for magnetic Prandtl numbers of order unity. Reuter et al.

(2011) show that when increasing the Reynolds numbers with fixed Pm, the
sustained magnetic field becomes small-scale. However they find that small
Prandtl number calculations at fixed Re yield a dipole dominated field. In the
study of Reuter et al., the highest Reynolds number, based on rms velocity, is
Re∗ = 2367, for which a small-scale dynamo is generated with a magnetic energy
spectrum peaking around l = 5 for Pmf = 0.25. The rms Reynolds number is
defined as Re∗ = u∗Re where u∗ is the dimensionless rms velocity. In our MHD
calculations, the rms velocity is u∗ ≈ 0.048, that is Re∗ ≈ 2313. All the dynamos
we obtain at Pmf = 0.01 have fields dominated by the dipole component.

4 Analysis of the dynamo mechanism

In order to elucidate the effect of the wall on the dynamo mechanism, it is nec-
essary to describe in detail the generation of magnetic field in our simulations.
Since most of the magnetic energy resides in the axisymmetric components, and
dynamos are generally understood in a mean field framework (e.g. see the re-
view of Roberts, 2007), we will focus on the production of the axisymmetric
magnetic field, the largest scale of the system. The role of a change in the wall
magnetic properties is described for two canonical cases: large wall conductiv-
ity, (ĥ, σr, µr) = (0.1, 10, 1), hereafter called Case C, and large wall permeability,

(ĥ, σr, µr) = (0.1, 1, 1000), hereafter called Case P. In Section 4.1, we show that
the toroidal magnetic field is induced by zonal velocity shear within the bound-
ary layer adjacent to the outer wall. In both Cases C and P, the magnetic
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properties of the wall play a crucial role in allowing a strong toroidal field to
develop in the shear layer. In Section 4.2, we set out the ingredients that lead
to the production of the mean emf, the source of the poloidal field. We find that
only a limited range of azimuthal modes (between 5 ≤ m ≤ 14) contribute, and
we will propose an explanation for this observation based on the properties of
the flow. Finally, our explanations are verified in a set of numerical experiments
in Section 4.3.

4.1 Generation of the axisymmetric toroidal field

The axisymmetric dynamo magnetic field components in Cases C and P are
plotted in Figure 8. In both cases, the axisymmetric azimuthal magnetic field,
Bφ, is generated in the narrow fluid shear layer next to the outer wall. The
axisymmetric poloidal magnetic field intersects this shear layer, and experiences
the strong radial gradient of uφ. The toroidal field is then created mostly by
the so-called ω effect (e.g. Roberts, 2007), where Bφ is induced by the action of
the radial shear of uφ on the axisymmetric radial magnetic field, Br.

The toroidal field must vanish in the vacuum region outside of the wall, i.e.
Bφ(ro + h) = 0. The wall therefore provides a buffering region between the fluid
and the vacuum for Bφ; in the absence of the conducting outer wall, the toroidal
field would necessarily vanish at r = ro, implying the presence of large radial
gradients of Bφ in the fluid shear layer and so strong ohmic dissipation there.
From Equations (9) and (11) we can deduce the following continuity equations
for Bφ and its radial gradients at the fluid-wall interface:

Bφ

∣

∣

w
= µrBφ

∣

∣

f
, (12)

∂rBφ

∂r

∣

∣

∣

∣

w

= σrµr
∂rBφ

∂r

∣

∣

∣

∣

f

, (13)

where the discontinuity of ∂rrBφ is deduced from the discontinuity of the tan-
gential electric currents, jθ = −(1/r)∂r(rBφ/µ). High values of σr or µr buffer
Bφ in the fluid in different ways, as follows.

4.1.1 Effect of large conductivity: Case C

Case C has µr = 1, and so Bφ is continuous, but the relatively high conductivity
of the wall allows for large radial gradients of Bφ in the wall compared to the
fluid. In this case, a large amplitude of Bφ in the shear layer can match to
the vacuum boundary condition with weak radial gradients of Bφ in the fluid
near the wall. High wall conductivity therefore leads to less limitation on the
growth of Bφ in the shear layer. Equivalently, large σr enables the circulation of
large latitudinal electric currents in the wall, which supports an axisymmetric
azimuthal field of large amplitude in the fluid (Figure 9(a)).

These ideas are borne out in Figure 9(c), which shows the radial profile of
the axisymmetric azimuthal field at the colatitude θ = π/4 for increasing values
of σr and µr = 1. The maximum of the azimuthal field in the fluid increases
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Figure 8: Color. Axisymmetric magnetic field in a meridional plane (time-
average over about 100r0/Uw). From left to right: Azimuthal component Bφ,
poloidal magnetic field lines, radial component Br and latitudinal component
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represents the wall of thickness ĥ = 0.1. For the color plots of Case P, Bφ in
the wall is divided by 1000 and Bθ by 10.
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Figure 9: (a) and (b) Axisymmetric poloidal electric currents, jP , in a close-up
of the meridional plane for µr = 1. The vertical and horizontal axis corresponds
to the radius and the colatitude respectively. The solid (dotted) lines represent
clockwise (counter-clockwise respectively) electric currents. (c) Bφ(θ = π/4, r)
for µr = 1 and varying σr. The region r > 1 corresponds to the wall.

up to σr = 50 but starts to saturate for higher σr. It appears that for σr ≥ 50,
the wall entirely shields the fluid from the vacuum boundary condition and
the amplitude of the azimuthal field, unrestrained by the vacuum boundary
condition, only depends on the induction and its competition with magnetic
diffusion in the shear layer. For σr = 10 (Figure 9(a)), the electric currents fill
the whole thickness of the wall. For σr = 100 (Figure 9(b)), the currents appear
more confined to the inner side of the wall at high latitudes. This is explained by
the discontinuity of the tangential currents at the interface (Equation 11) leading
to stronger values of jθ in the inner part of the wall. A counter-clockwise current
loop is also present in the outer equatorial part of the wall.

The wall thickness plays here a similar role to the wall conductivity: a thick
wall makes the matching between a large amplitude of Bφ in the shear layer

and the vacuum possible. The comparison of our calculations at ĥ = 0.1 and
ĥ = 0.01 in Figure 5 confirms the favorable role of a thick wall on dynamo
action. However, we note that for ĥ > 0.1 this favorable effect may well be lost
due to the occurrence of a skin effect for oscillatory magnetic fields as shown by
Kaiser and Tilgner (1999).
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In summary, for a wall of small magnetic permeability, a high conductivity
or a large thickness is necessary to obtain a large amplitude of the axisymmetric
toroidal field due to the proximity between the shear layer and the vacuum.

4.1.2 Effect of large permeability: Case P

When the wall has a large magnetic permeability, the discontinuity of the tan-
gential magnetic field component across the fluid-wall interface (Equation 9)
yields weak values of Bθ in the fluid close to the wall. This forces the poloidal
magnetic field in the fluid to be mainly radial, effectively strengthening Br in
the shear layer (Figure 8(b)). By maintaining this radial magnetic field across
the shear layer, especially at high latitudes where the radial gradients of uφ

are large, the wall directly enhances the ω effect via the induction term Br∂ruφ,
leading to the production of a strong azimuthal magnetic field in the fluid. Since
Br is stronger at high latitudes in Case P than in Case C, the maximum val-
ues of Bφ in the shear layer are observed at higher latitudes in Case P than
in Case C, as can be seen in Figure 8. For Case P, the discontinuity of Bφ at
the interface implies that a large toroidal magnetic field is present in the wall.
Furthermore, the discontinuity of Bθ provokes an abrupt change in the direction
of the poloidal magnetic field lines in the wall which connect in the wall rather
than in the vacuum, confining the magnetic field inside the wall.

The arguments presented in this section assume that only diffusive processes
are acting in the wall, and so the radial gradient of Bφ is roughly linear in r
within the wall. An induction process for Bφ, due to the coupling of uφ and
the axisymmetric poloidal magnetic field, also happens in the wall but we have
verified that the induction terms are several orders of magnitude smaller than
the diffusive terms in the wall for each case.

4.2 Generation of the axisymmetric poloidal field

We have seen that the axisymmetric toroidal magnetic field, BT is mainly gen-
erated from an ω effect acting on the axisymmetric poloidal magnetic field, BP

(in particular the axial dipole). According to the Cowling anti-dynamo theorem
(e.g. Roberts, 2007), BP must be sustained by the coupling of non-axisymmetric
velocity and magnetic modes. Indeed we find that the poloidal magnetic field is
of strongest amplitude in the equatorial belt where the non-axisymmetric mo-
tions are present (Figure 8). The equations for the evolution of the components
of the axisymmetric poloidal field, Br and Bθ, in the fluid are

∂Br

∂t
=

1

r sin θ

∂

∂θ
(sin θE)−

[

∇× 1

σf
∇× B

µ0

]

r

, (14)

∂Bθ

∂t
= −1

r

∂

∂r
(rE)−

[

∇× 1

σf
∇× B

µ0

]

θ

, (15)
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where the source of the axisymmetric poloidal field, the mean electromotive
force (emf), is

E =

Mmax
∑

m=0

Em with Em = um
r Bm

θ − um
θ Bm

r . (16)

Em is non-zero if there are correlations between the velocity and magnetic field
modes of same azimuthal order m, denoted here as um and Bm.

The production of the mean emf E is a very complex problem, and so we
break down the problem into steps, which are summarized below and then de-
scribed in detail after. Step 1 consists of the main observation, which we then
explain by going through Steps 2, 3 and 4.

Step 1 We find that the main contribution to the emf comes from a limited num-
ber of azimuthal modes, specifically 5 ≤ m ≤ 14, which we will call the
“dynamo” modes. These modes, together with the axisymmetric mode
m = 0, can each sustain the dynamo via the mechanism as explained
below.

Step 2 The components Bm
r and Bm

θ are mainly produced by the distortion of the
axisymmetric toroidal magnetic field, BT , by the velocity modes of same
azimuthal order, um

r and um
θ . Consequently, Bm modes are out of phase

by π/2 in φ with um modes of same direction (r or θ).

Step 3 As a consequence of Step 2, the emf Em produced by the mode m is non
zero if um

r and um
θ , are partly out of phase. The latitudinal and radial

gradients in the zonal velocity lead to this required systematic phase shift
between um

r and um
θ because they are mainly located at different radii.

Step 4 Dynamo modes with a narrow range of m are selected because the phase
shift between um

r and um
θ is only significant for modes with a typical shear-

ing timescale of the same order as their turnover timescale.

Cases C and P display very similar features for their emf so the mechanisms of
generation ofBP are likely the same. Therefore, in the following, we only analyze
Case C. This suggests that the wall magnetic properties play only a minor role in
the generation of the axisymmetric poloidal field from non-axisymmetric modes.

Step 1: Main contributions to the emf

Figure 10(a) shows the time-averaged emf produced by the interactions ofm = 0
(axisymmetric) modes and other groups of them > 0 (non-axisymmetric) modes.
As expected from Cowling’s theorem, the largest values of Br and Bθ (Fig-
ure 8(a)) do not correlate with the latitudinal and radial derivatives of Em=0,
respectively. Figure 10(a) also shows that Em from the m ≥ 5 modes is one or-
der of magnitude larger than from the 1 ≤ m ≤ 4 modes, and is produced in the
equatorial belt with its latitudinal and radial derivatives well correlated with Br

and Bθ in Figure 8. Figure 10(b) shows the maximum of Em from each mode;
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Figure 10: Color. (a)-(b) Time-averaged mean emf E and (c) magnetic energy
spectrum for azimuthal modes in the toroidal component (black circles) and in
the poloidal component (gray squares) for Case C.
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clearly some modes produce a significantly larger emf than others, most notably
m = 5, 7, 8, 13, 14. However, the kinetic energy of these modes is not noticeably
different than the other modes according to the kinetic energy spectrum, which
displays a nearly flat slope for m ≤ 8 (Figure 3(d)). Furthermore the magnetic
energy spectrum in m (Figure 10(c)) also shows that the azimuthal modes pro-
ducing a large emf do not exhibit a significantly larger magnetic energy. The
m ≥ 15 modes produce weak contributions to the emf.

To explain why the production of a temporally- and spatially-coherent emf
depends on the azimuthal order of the modes, we first studied whether a given
m mode can sustain the axial dipole on its own. To do so, we ran a simulation
identical to Case C, except that only modes m = 0, 5, 10, 15, ... are calculated.
We obtained a dynamo with an axisymmetric magnetic field of very similar
characteristics to that of Case C. This simulation has the same toroidal field
morphology, an axial dipole with strong values of Br in the equatorial belt, and
about half the amplitude of the axisymmetric field produced in Case C. We
further ran a similar numerical simulation but this time calculating only modes
m = 0, 20, 40, .... This case fails to produce a dynamo. We conclude that for
selected m the production of Em depends only on the interaction of a mode
with itself and with the axisymmetric magnetic field. Hereafter these selected
modes are called the dynamo modes, and we consider their contributions to
the emf individually. We now need to understand how the dynamo modes
organize to produce a coherent emf and what physical mechanism determines
which azimuthal orders are dynamo modes.

Step 2: Generation of the non-axisymmetric magnetic field

A magnetic mode m is partly generated by the interaction of the axisymmetric
magnetic field with the m velocity mode. Since Bφ ≫ Br, Bθ as observed in
Figures 6 and 8, the evolution rates of the non-axisymmetric field produced by
this interaction, Bm

r and Bm
θ , are given by,

∂Bm
r

∂t
∼ Bφ

r sin θ

∂

∂φ
um
r +

[

∇2Bm
]

r
, (17)

∂Bm
θ

∂t
∼ Bφ

r sin θ

∂

∂φ
um
θ +

[

∇2Bm
]

θ
. (18)

The induction term on the right-hand side corresponds to the distortion of
the axisymmetric toroidal magnetic field lines by the non-axisymmetric velocity
modes. To assess if this interaction is the main source of the non-axisymmetric
magnetic modes, we compared the induction terms (including all interactions) of
Bm

r and Bm
θ with the induction terms in Equations (17) and (18), respectively,

for m = 5. We found that the induction terms in Equations (17) and (18)
contribute to more than 70% of the amplitude of the induction from all terms.
In Equation (17), the balance between the induction term and the evolution
rate of Bm

r and/or with the diffusion term implies that Bm
r and um

r should be
out of phase by π/2 in φ. Similar arguments based on Equation (18) yield that
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Figure 11: Color. Snapshot of the radial (a) and latitudinal (b) components
of the m = 5 magnetic (color) and velocity (lines) mode (Case C). Left: (r, φ)
planes above and below the equatorial plane at colatitudes θ = π/2± π/15.
Right: (φ, θ) plane at radius r = 0.8 with the colatitude on the vertical axis
(range limited to [π/4, 3π/4]) and the longitude on the horizontal axis (range
limited to [0, π]). For the magnetic field in color: red: positive and blue: nega-
tive. For the velocity: black line: positive and gray line: negative.
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Bm
θ and um

θ must be phase shifted by π/2 in φ. Figure 11 shows snapshots of
the radial and latitudinal components of the velocity and magnetic field for the
m = 5 mode in different planes. We indeed observe a phase shift of about π/2
in φ between velocity and magnetic modes. Any snapshot of the m ≥ 2 modes
shows similar results.

Step 3: Spatial distribution of the non-axisymmetric velocity

The azimuthal average of um
r Bm

θ in E is non zero if um
r and Bm

θ are partly in
phase in azimuth. Similarly a non zero azimuthal average of um

θ Bm
r requires

that um
θ and Bm

r are partly in phase. According to our previous argument, um
r

and Bm
r are out of phase by π/2, and similarly for um

θ and Bm
θ . Hence um

r must
be at least partly out of phase with um

θ to obtain a non-zero emf. The shearing
caused by latitudinal and radial gradients of the zonal velocity could create
such a systematic phase shift. This shearing of the non-axisymmetric velocity
structures is visible in Figure 11 where the velocity components appear more
noticeably slanted in (φ, θ) planes than in (r, φ) planes. In snapshot figures,
the velocity modes appear to be sometimes torn apart in (φ, θ) planes as can
be observed for um

θ in Figure 11(b). A systematic phase shift between um
r and

um
θ could be created when their strongest values have slightly different spatial

locations and therefore experience a different shear by uφ.
Figure 12 shows the non-axisymmetric rms velocity components in a merid-

ional plane. The strongest latitudinal velocity is located closer to the outer
sphere than the strongest radial velocity, presumably due to the presence of the
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Figure 13: Schematic representation of latitudinal velocity contours (black: pos-
itive and gray: negative) in a plane (φ, θ) for two modes of different azimuthal
order m.

impenetrable wall, which forces radial motions to decelerate at the wall and
to recirculate tangentially. Since latitudinal gradients of the zonal velocity are
larger than radial gradients in the equatorial region, and the non-axisymmetric
structures are more visibly slanted in a (φ, θ) plane compared to a (r, φ) plane
(see Figure 11), the shearing caused by latitudinal gradient of uφ is predomi-
nant in the equatorial belt. Since um

θ is located closer to the wall than um
r , um

θ

experiences a larger latitudinal shearing than um
r .

Step 4: Selection of the dynamo modes

For the moment, suppose that um
r experiences no latitudinal shearing. To obtain

a noticeable latitudinal shearing of um
θ , the typical shearing timescale has to be

comparable to or shorter than the turnover timescale of the structure. This
argument based on the dynamical timescales explains why certain azimuthal
modes are preferred. To illustrate how the shearing affects differently struc-
tures depending on their azimuthal and latitudinal extents, Figure 13 represents
schematically contours of um

θ in a plane (φ, θ) at a given radius R for two dif-
ferent azimuthal modes. The “shearing” distance, d, depends on the latitudinal
gradient of the angular velocity, Ω = uφ/r sin θ, integrated over the latitudinal
extent of the structure lθ during a time ∆t:

d =
∂Ω

∂θ
lθ∆t, (19)

where ∆t is the typical turnover timescale:

∆t =
lθ

|um
θ | . (20)

The shearing of the structure of azimuthal width lφ = 2πR/2m is significant if
lφ ≤ d, that is, if

m ≥ mc =
πR|um

θ |
∂θΩl2θ

. (21)

Note that, in general, we expect the latitudinal extent lθ and the non-axisymmetric
velocity amplitude |um

θ | to depend on m, so the formula (21) is non-linear in
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Figure 14: Latitudinal profile of the rms latitudinal velocity at radius r = 0.96
for different azimuthal modes m (time and azimuthal average). The latitudinal
gradient of angular velocity Ω at radius r = 0.96 is plotted in gray (divided by
1000).

m. Still supposing that um
r is not sheared, the mode m = mc displays a phase

shift of π/2 in φ between um
r and um

θ in the equatorial plane. Modes with small
m experience a smaller relative deformation than larger m modes for the same
shearing rate as pictured in Figure 13. For modes with very large m, we may
expect that the deformation undergone by the structures (d ≫ lφ since lφ is
small) leads to an incoherent phase shift on average.

The simplified picture described here predicts the existence of a critical mode
and possibly a critical range of modes (lφ ≈ O(d)), for which a systematic phase
shift between um

r and um
θ is produced due to the equatorial anti-symmetry of the

zonal flow. This argument provides a consistent explanation for the observations
made in Figures 10(a) and 10(b): (i) a coherent emf is produced only for m ≥ 5,
(ii) only some modes of selected azimuthal symmetry produce a large emf, and
(iii) m ≥ 15 modes generate only a weak emf.

To evaluate mc from the numerical simulations, we plot in Figure 14 the
latitudinal profile of the rms |um

θ | for the modes m = 2, m = 5 and m = 9 at
a given radius and time- and φ-averaged. First, the amplitude of the velocity
at this radius is comparable for the three modes. Second, the latitudinal extent
of the structures varies only weakly with m. The peaks of the profiles have a
width corresponding to the region of maximum latitudinal gradient of the angu-
lar velocity Ω, of latitudinal extent about 0.2ro. For this azimuthal order range
(m ≤ 9), the latitudinal extent, lθ, may be limited to the region of largest lat-
itudinal gradient of Ω, readily explaining why different azimuthal modes have
similar latitudinal extents. Using the values obtained in the numerical simu-
lations, |um

θ | ≈ 0.01, R ≈ 1, |∂θΩ| ≈ 1 and lθ ≈ 0.2 (given in non-dimensional
units), we obtain mc ≈ 1 from the formula (21). However, in the emf plots of
Figure 10(a), we found that m ≥ 5 is necessary to obtain a coherent emf. This
apparent discrepancy is probably explained by the neglect of the latitudinal
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Figure 15: Time series of Em(r = 0.85, θ = π/2) produced by the m = 7 mode.

shear of um
r so far: um

r also undergoes a latitudinal shear, but less that um
θ

since ∂θΩ is weaker at smaller radius where um
r is strongest (Figure 12). Con-

sequently, it is not surprising that a larger deformation of the velocity structure
than d ≈ lφ is required to obtain a significant phase shift between radial and
latitudinal velocity, leading to a larger mc in the numerical simulations than
given by our simplified picture summarized in the formula (21).

In the arguments presented here, we have emphasized the importance of the
radial segregation between the maximum values of um

r and um
θ . Bm

r is induced
locally at same radius as um

r , and similarly for Bm
θ and um

θ . However the cross
product E requires that Bm

r exists in the same region as um
θ , and similarly for

Bm
θ and um

r . Magnetic diffusion, which is at least as important as magnetic
induction at scales m ≥ 5 (for which Rml . 1, see Section 3.1) alleviates this
problem by coupling regions of large radial gradients of Bm

r and Bm
θ . The

large-scale dynamo described here may therefore fail for larger magnetic Prandtl
numbers (i.e. smaller magnetic diffusivities) than considered here.

Finally, we have not considered so far the fluctuating nature of the non-
axisymmetric flow, which may lead to episodic losses of the phase shift between
components of the velocity. Figure 15 shows a time series of Em(r = 0.85, θ = π/2)
produced by the m = 7 mode. Em periodically goes to zero, but it is non zero
on average. The contributions of the dynamo modes at different m ensure that
the total emf is always large enough to sustain the axial dipole.

In summary, we find that the axisymmetric poloidal field is generated by a
few non-axisymmetric modes. The latitudinal deformation of these modes, a
consequence of the equatorial anti-symmetry of the zonal flow, is crucial for the
production of a coherent emf. The selection of the non-axisymmetric dynamo
modes depends on the boundary forcing (measured by the Reynolds number)
since this determines the latitudinal gradient of the zonal flow and the ampli-
tude of the non-axisymmetric velocity (see Figure 4). All simulations here were
performed at the same forcing but the influence of the Reynolds number on the
dynamo modes could be tested at a later date.
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Case σm=0
r σm 6=0

r µm=0
r µm 6=0

r Dynamo?
C0 10 1 1 1 yes
C1 1 10 1 1 no
P0 1 1 1000 1 yes
P1 1 1 1 1000 no

Table 1: Results of MHD simulations with different magnetic properties de-
pending on the azimuthal order m (ĥ = 0.1).

4.3 Effects of the wall magnetic properties on the non-

axisymmetric modes

In Section 4.1, we have demonstrated the importance of the wall magnetic prop-
erties for the amplification of the axisymmetric toroidal field, both by a large
conductivity, which shields the shear layer from the vacuum, or by large perme-
ability, which directly enhances the ω-effect by forcing the field to be normal in
the shear layer. We emphasize that the induction of the axisymmetric toroidal
field clearly happens in the fluid shear layer. In Section 4.2, we have described
the flow properties leading to the generation of an axisymmetric poloidal mag-
netic field without invoking the role of the wall magnetic properties. This yields
the tentative conclusion that the wall is necessary to the dynamo only to obtain
a large amplitude axisymmetric toroidal field. This axisymmetric toroidal field
then feeds the non-axisymmetric magnetic components responsible for the mean
emf, but the rest of the dynamo mechanism is ultimately a result of the flow
properties.

To confirm this idea, we perform the following numerical experiment: the
wall conductivity or permeability is set to different values for different azimuthal
orders, m = 0 or m 6= 0 and the effect on dynamo action is studied. This is an
easy modification to the code since the azimuthal direction is solved spectrally
using a spherical harmonics decomposition. The results are presented in Table 1.
In Case C0, the wall conductivity is enhanced for the mode m = 0 but not for
the modes m 6= 0 so that only the axisymmetric magnetic field sees the discon-
tinuity of conductivity at the fluid-wall interface. In this case, an axisymmetric
magnetic field very similar to the dynamo case C is produced. In Case C1,
the wall conductivity enhancement is reversed and only the non-axisymmetric
magnetic field sees the discontinuity of conductivity. Then, the system fails
to produce a dynamo. Similar results are obtained for mode-assigned perme-
ability (Cases P0 and P1). The nonlinearity of the system implies that the
amplification of a given magnetic mode affects the other non-amplified modes
and vice versa, so the interpretation of the results of this numerical experiment
is not entirely straightforward. Nonetheless, the results of both Cases C0 and
C1 taken together (and Cases P0 and P1 together) imply that this nonlinear
cascade is inefficient in these cases, and therefore contribute further evidence to
the conjecture that the mechanism of generation of the axisymmetric poloidal
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Case σm=0
r σm 6=0

r µm=0
r µm 6=0

r Dynamo?
pol tor pol tor pol tor pol tor

C0P 10 1 1 1 1 1 1 1 no
C0T 1 10 1 1 1 1 1 1 yes
P0P 1 1 1 1 1000 1 1 1 yes
P0T 1 1 1 1 1 1000 1 1 no

Table 2: Results of MHD simulations with different magnetic properties for
the poloidal and toroidal component and depending on the azimuthal order m
(ĥ = 0.1).

field does not require the non-axisymmetric magnetic field to be modified by
the presence of the wall.

To further narrow down the role of the wall we attempt to distinguish be-
tween its effect on BP and BT by performing another set of modified simulations
where we set different values of the conductivity and the permeability for the
poloidal and toroidal m = 0 modes while the relative conductivity and perme-
ability are kept equal to 1 for the modes m > 0. The results are presented in
Table 2. A dynamo is only obtained in Cases C0T and P0P. Again the nonlin-
earity of the system demands some caution in the interpretation of these results,
but these special cases taken together lend further credence to our theories about
the role of the wall: an enhanced conductivity amplifies BT directly, whereas an
enhanced permeability provokes a strengthening of BP in the shear layer, and
so a direct enhancement of the ω effect. No further action of the conducting
wall on the other components of the magnetic field is required.

5 Conclusions and discussion

Through a series of high resolution simulations, we have studied dynamos driven
by boundary forcing in a spherical shell geometry, and the effects of varying
independently the thickness, electrical conductivity and magnetic permeability
of the outer wall.

For an homogeneous system (same magnetic permeability and conductivity
in the fluid and the wall) with a magnetic Prandtl number Pmf = 0.01, the flow
is unable to sustain a magnetic field at the forcing used (corresponding to Re =
48193, about 200 times the critical forcing for hydrodynamical non-axisymmetric
instabilities of the base flow). For a wall thickness h = 0.1ro, increasing the wall
conductivity, σw, by a factor 10 or the wall magnetic permeability, µw, by a
factor 1000 creates a dynamo. The effects of high σw and high µw are clearly
different on the dynamo threshold, so the decrease of the magnetic diffusivity in
the wall, ηw = 1/(σwµw), is not the controlling parameter of this problem. The
favorable roles of large wall thickness, conductivity and magnetic permeability
on dynamo action obtained in our numerical simulations are in agreement with
previous numerical studies using different geometry, different flows and in some
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cases, idealized boundary conditions (Avalos-Zuniga et al., 2003; Marié et al.,
2003; Ravelet et al., 2005; Gissinger et al., 2008; Laguerre et al., 2008; Giesecke
et al., 2010). In particular for a thin wall (thickness h = 0.01ro), we found a
good agreement with the results of Roberts et al. (2010), where a similar setup
is used with an outer magnetic boundary condition valid in a thin-wall limit.

In our numerical simulations, in both large σw and large µw cases, the dy-
namo generates a large-scale (axisymmetric) magnetic field. The magnetic field
is mostly an axisymmetric toroidal field and an axisymmetric dipolar poloidal
component. The axisymmetric toroidal magnetic field, BT , is generated by an
ω effect, corresponding to the radial shearing of the radial magnetic field in the
shear boundary layer located close to the outer wall. The wall plays an essential
role in the amplification of BT in the shear layer. In the large σw case, the
discontinuity of conductivity allows strong radial gradient of the axisymmetric
azimuthal magnetic field, Bφ, or equivalently large latitudinal electric currents
in the wall, shielding the induction in the shear layer from the vacuum outside,
thereby allowing stronger Bφ in the fluid. In the large µw case, the wall forces
the poloidal magnetic field to be normal at the fluid-wall interface, imposing
strong radial magnetic field across the shear layer and therefore again the gen-
eration of stronger Bφ. Similarly to the large σw case, a thick wall provides
a wide matching region to the vacuum condition thereby allowing a large am-
plitude of BT in the shear layer. By filtering the effects of the wall magnetic
properties on the different magnetic modes (Section 4.3), we can reasonably
conclude that the essential role of the wall on the dynamo is to allow for large
axisymmetric toroidal field BT in the fluid. The vacuum boundary condition is
detrimental for the dynamo by constraining the allowable growth of BT and so
the other magnetic components of the dynamo that feed from it. The presence
of a “shielding” wall is therefore essential - either thick, of high conductivity or
high permeability. We conjecture that without these conditions, even at higher
forcings no dynamo will be found if no hydrodynamical bifurcation occurs and
for fixed magnetic diffusivity of the fluid. However we emphasize that this ar-
gument applies only for shear flows where the ω effect occurs adjacent to the
outer boundary.

The axisymmetric poloidal magnetic field, BP , is mostly an axial dipole,
and is generated in the equatorial belt, where non-axisymmetric motions are
strongest. A coherent emf is produced by a narrow range of non-axisymmetric
modes with azimuthal symmetry 5 ≤ m ≤ 14. The velocity modes are sheared
by the large latitudinal gradients of the zonal flow uφ in the equatorial region.
This shearing is essential to produce appropriate azimuthal phase shifts between
radial and latitudinal velocity components, leading to non-zero azimuthal aver-
age of the cross product between velocity and magnetic field of same azimuthal
symmetry. This emf has a significant time-average only for a few modes which
are selected by the amplitude of the non-axisymmetric velocity, their azimuthal
and latitudinal extent and the latitudinal gradients of the zonal flow. Since
all these quantities vary with the strength and the geometry of the forcing, we
expect different non-axisymmetric dynamo modes to be selected for different
forcings.
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In the more general context of dynamo theory, we note that this numerical
dynamo model operates similarly to the asymptotic dynamo model of Bragin-
sky (1964) where a large zonal flow generates a strong axisymmetric toroidal
magnetic field, and a small deviation of the flow from axisymmetry may be suffi-
cient to produce an axisymmetric poloidal magnetic field to overcome Cowling’s
theorem.

Having established how our dynamo model operates, it is important to dis-
cuss how our results relate to the observations of the VKS experiment. In this
work, we use a spherical geometry for numerical convenience. In this geometry
and at the large forcings studied here, the shear exerted by the zonal flow is
located in a viscous boundary layer at the outer wall, yielding significant in-
fluence of the wall parameters on the dynamo action. In the cylindrical von
Kármán setup used in the VKS experiment and at Reynolds number of the
order of 106, velocity measurements in water show evidence that the largest
axial gradients of the shear layer are located in the equatorial mid-plane be-
tween the two counter-rotating disks (Marié et al., 2003). Consequently, an
“axial” ω effect, the shearing of the axial magnetic field lines, is thought to be
operating in the equatorial mid-plane of the cylinder (Bourgoin et al., 2002).
This is a major difference between our numerical work and the VKS experi-
ment. If the shear layer is far from the outer boundary, then the amplification
by the wall of the toroidal field may not be operating in the VKS experiment.
In the VKS experiment, the generation of the axisymmetric poloidal magnetic
field is usually described as the result of an α effect produced by the helical
vortices present between the blades fixed on the rotating flat disks (Pétrélis
et al., 2007). In numerical studies, this effect has been parametrized either by
adding a source term in the magnetic induction equation of the mean field (La-
guerre et al., 2008; Giesecke et al., 2010) or by using an analytical formulation
of non-axisymmetric flow (Gissinger, 2009). In this scenario, BP is produced
close to the disks, and the generation mechanism is thought to be helped by
the high magnetic permeability or electrical conductivity of the disks. In our
work, somewhat differently, we found that BP is produced in the equatorial belt
by fluctuating non-axisymmetric motions, and that the wall parameters do not
affect this mechanism.

The discrepancy in the location of the active dynamo regions, and therefore
the potentially different role of the wall on the different steps of the dynamo
feedback loop, may reveal the importance of the geometry of the container or
the presence of blades on the rotating walls in these dynamo experiments, both
physical and numerical. However the different approaches used to calculate
the induction effects (be they self-consistent or parametrized) in the various
numerical codes used to simulate the physical experiment may also explain part
of the discrepancy. In a forthcoming work, we will study the consequences of
the geometry of the forcing on dynamo action, still using a spherical geometry
but varying the latitudinal profile of angular velocity of the wall. Here, we
find that the latitudinal gradients of the zonal flow play an important role
in the selection of the non-axisymmetric dynamo modes sustaining the axial
dipole. Forcing confined closer to the poles may simulate the experimental
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forcing more realistically. A further interesting question is whether there are
certain configurations of the forcing which cannot produce dynamo action.
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A Implementation of the magnetic boundary con-

ditions

In this appendix, we derive the magnetic boundary conditions at an interface
located at the radius ro between the fluid and the wall (denoted by the subscript
f and w respectively) of different magnetic permeability, µ, or electrical con-
ductivity, σ. The magnetic properties in each media are constant. The relative
permeability and conductivity are µr = µw/µ0 and σr = σw/σf .

The magnetic field is decomposed into poloidal and toroidal vectors:

B = ∇×∇× (BP r) +∇× (BT r), (22)

where BP and BT are the poloidal and toroidal scalars. The spherical compo-
nents of B can be expressed in function of these two scalars by

Br =
1

r
L2(BP ), (23)

Bθ =
∂

∂θ

[

1

r

∂

∂r
(rBP )

]

+
1

sin θ

∂BT

∂φ
, (24)

Bφ =
1

sin θ

∂

∂φ

[

1

r

∂

∂r
(rBP )

]

− ∂BT

∂θ
, (25)

with L2 the angular laplacian operator,

L2 = − 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

− 1

sin2 θ

∂2

∂φ2
. (26)
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Through a magnetic permeability discontinuity, the continuity of the radial
magnetic field (Equation 8), and the discontinuity of the tangential magnetic
field (Equation 9) yields

BP |w = BP |f , (27)

BT |w = µr BT |f , (28)

∂rBP

∂r

∣

∣

∣

∣

w

= µr
∂rBP

∂r

∣

∣

∣

∣

f

. (29)

The electric current density, j, is divergence-free and can also be decomposed
into poloidal and toroidal scalars, jP and jT . Through an electrical conductivity
discontinuity, the continuity of the radial electric current density (Equation 10),
and the discontinuity of the tangential electric current density (Equation 11)
yields

jP |w = jP |f , (30)

jT |w = σr jT |f , (31)

∂rjP
∂r

∣

∣

∣

∣

w

= σr
∂rjP
∂r

∣

∣

∣

∣

f

. (32)

jP and jT are related to the BP and BT by

jP =
BT

µ
, (33)

jT =
1

r2
L2

BP

µ
− 1

r

∂

∂r

rBS

µ
, (34)

jS =
1

r

∂

∂r

rBT

µ
, (35)

where we use the spheroidal scalar for a divergence-free vector,

jS =
1

r

∂rjP
∂r

. (36)

To solve the magnetic induction equation, we need to evaluate second order
radial derivatives on our irregular radial grid. To obtain the finite difference
scheme of second order in the vicinity of ro, a radial function g is expanded
using Taylor’s formula:

g(ro − dr−) = g(r−o )− g′(r−o )dr
− + g′′(r−o )

(dr−)2

2
+O((dr−)3), (37)

g(ro + dr+) = g(r+o ) + g′(r+o )dr
+ + g′′(r+o )

(dr+)2

2
+O((dr+)3), (38)

where r−o (r+o ) is located infinitely close to ro on the fluid side (wall side respec-
tively) and dr− (dr+) is the radial incremental step between ro and his neighbor
on the radial grid on the side f (w respectively).
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The function g is chosen such as it is continuous at the interface, while its
radial derivatives are not:

g(r+o ) = g(r−o ), (39)

g′(r+o ) = γg′(r−o ), (40)

g′′(r+o ) = αg′′(r−o ) + βg(r−o ) + q, (41)

where q represents the possible contribution from the non-linear terms.
The second-order derivative of g is obtained by taking the combination

g(ro − dr−)γdr+ + g(ro + dr+)dr−, then applying the identities (37) – (41)
and rearranging, which leads to

g′′(r−o ) =
2

dr+dr−(αdr+ + γdr−)

[

dr−g(ro + dr+) + γdr+g(ro − dr−)

−(dr− + γdr+)g(r−o )−
dr−(dr+)2

2
βg(r−o )

]

− dr+

γdr− + αdr+
q.(42)

A.1 Poloidal component

The evolution equation for the poloidal scalar, BP , is obtained by taking the
dot product of the magnetic induction equation with r:

∂BP

∂t
= − 1

σ

[

1

r2
L2

BP

µ
− 1

r

∂

∂r

(

1

µ

∂

∂r
(rBP )

)]

+ fP , (43)

where fP contains the non-linear terms. We use a spherical harmonics expansion
for BP ,

BP (r, θ, φ) =

∞
∑

l=0

l
∑

m=−l

pml (r)Y m
l (θ, φ), (44)

to solve the angular laplacian operator:

L2BP =
∑

l

∑

m

l(l + 1)pml Y m
l , (45)

where Y m
l is the spherical harmonic function of degree l and order m.

The non-linear terms are:

fP =
1

l(l + 1)
r · ∇ × (u×B), (46)

=
1

l(l + 1) sin θ

(

∂

∂θ
sin θ [u×B]φ − ∂

∂φ
[u×B]θ

)

. (47)

The cross-product u×B is calculated in spatial space using u = (ur, uθ, uφ) and
B = (Br, Bθ, Bφ). At the fluid-wall interface, the velocity in the fluid matches
continuously to the no-slip boundary condition, u(ro) = (0, 0, uφ(ro)) with the
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azimuthal velocity in the wall uφ = r sin θ cos θ. The spherical components of
the cross-product in the wall are

[u×B]r = −uφBθ, (48)

[u×B]θ = uφBr, (49)

[u×B]φ = 0. (50)

The continuity of the velocity and Br across the interface therefore insures the
continuity of the non-linear term fP .

The difficulty in the numerical implementation of Equation (43) is therefore
to calculate the second-order radial derivative of rpml . Using g = rpml and
Equation (29),

g′(r+o ) = µrg
′(r−o ). (51)

The right-hand side of Equation (43) must be continuous across the interface
yielding,

g′′(r+o ) = σrµrg
′′(r−o ) + g(r−o )

l(l + 1)

r2o
(1− σrµr). (52)

We can now use the identity (42) to calculate g′′(r−o ) from the values of g at
r = ro−dr−, r = ro and r = ro+dr+. This allow us to evaluate the right-hand
side of the linear evolution equation for pml at the point r−o . The radial scheme
in the wall uses the point at r+o with pml (r+o ) = pml (r−o ).

A.2 Toroidal component

The evolution equation for the toroidal scalar, BT , is obtained by taking the
dot product of the curl of the magnetic induction equation with r:

∂BT

∂t
= − 1

r2
L2

1

σ

BT

µ
+

1

r

∂

∂r

1

σ

∂

∂r

(

r
BT

µ

)

+ fT . (53)

Again a spherical harmonics expansion is used,

BT (r, θ, φ) =

∞
∑

l=0

l
∑

m=−l

tml (r)Y m
l (θ, φ). (54)

The non-linear terms are:

fT =
1

l(l + 1)
r · ∇ ×∇× (u×B), (55)

=
1

r
[u×B]r +

1

l(l + 1) sin θ

[

∂

∂θ
sin θ

1

r

∂

∂r
(r [u×B]θ) +

∂

∂φ

1

r

∂

∂r

(

r [u×B]φ

)

]

.(56)

At the interface BT (r
+
o ) = µrBT (r

−
o ), so the non-linear terms are continuous if

fT (r
+
o ) = µrfT (r

−
o ). The first term of right-hand side of (56), [u×B]r = −uφBθ,
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respects this continuity condition. However the second term on the right-hand
side of (56) does not respect this condition because of the discontinuity of the ra-
dial gradient of the velocity across the interface. The discontinuity of fT /µ must
therefore be taken into account in the numerical implementation of Equation 53.

We use g = rtml /µ. Using jP = BT /µ and Equation (32), we obtain

g′(r+o ) = σrg
′(r−o ). (57)

The right-hand side of Equation (53) divided by µ must be continuous across
the interface yielding,

g′′(r+o ) = σrµrg
′′(r−o ) + g(r−o )

l(l + 1)

r2o
(1− σrµr) + σwro

(

µrfT (r
−
o )− fT (r

+
o )

)

. (58)

Using the identity (42) to calculate g′′(r−o ) from the values of g at r = ro−dr−,
r = ro and r = ro + dr+, we can evaluate the evolution equation for tml at the
point r−o ,

∂tml (r−o )

∂t
= − 1

µfσf

l(l + 1)

r2o
tml (r−o ) +

1

roσf
g̃′′(r−o ) +

dr+fT (r
+
o ) + dr−fT (r

−
o )

dr− + µrdr+
, (59)

where

g̃′′(r−o ) =
2

dr+dr−σr(dr− + µrdr+)

[

σrdr
+g(ro − dr−) + dr−g(ro + dr+)(60)

−g(r−o )

(

σrdr
+ + dr− +

dr+2dr−

2

l(l + 1)

r2o
(1− σrµr)

)]

. (61)

The contribution of the non-linear terms to the evolution of tml at r = r−o is
therefore evaluated through a weighted average of fT (r

−
o ) and fT (r

+
o ) (third

term on the right-hand side of Equation 59), which insures continuity of BT /µ
and of (σ−1)∂r(rBTµ

−1).
The radial scheme in the wall uses the point at r+o with tml (r+o ) = µrt

m
l (r−o ).

A.3 Match to external potential field

The vacuum boundary condition at rv = ro + h corresponds to j = 0. The
interface between the wall (w) and the vacuum (v) corresponds to a jump of
magnetic permeability and electrical conductivity. The toroidal scalar vanishes
in the vacuum, so the boundary condition at r−v , the point infinitely close to the
interface on the side of the wall is simply,

tml (r−v ) = 0. (62)

In the vacuum, the poloidal scalar follows

∂pml
∂r

+
l + 1

r
pml = 0. (63)

36



Using Equations (27) and (29), the boundary condition for the poloidal scalar
is

∂pml
∂r

∣

∣

∣

∣

r−v

= −µrl + 1

r
pml (r−v ). (64)
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