In this paper, we introduce the semantic knowledge of medical images from
their diagnostic reports to provide an inspirational network training and an
interpretable prediction mechanism with our proposed novel multimodal neural
network, namely TandemNet. Inside TandemNet, a language model is used to
represent report text, which cooperates with the image model in a tandem
scheme. We propose a novel dual-attention model that facilitates high-level
interactions between visual and semantic information and effectively distills
useful features for prediction. In the testing stage, TandemNet can make
accurate image prediction with an optional report text input. It also
interprets its prediction by producing attention on the image and text
informative feature pieces, and further generating diagnostic report
paragraphs. Based on a pathological bladder cancer images and their diagnostic
reports (BCIDR) dataset, sufficient experiments demonstrate that our method
effectively learns and integrates knowledge from multimodalities and obtains
significantly improved performance than comparing baselines.Comment: MICCAI2017 Ora