2,753 research outputs found

    Supermassive black holes do not correlate with galaxy disks or pseudobulges

    Full text link
    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they appear not to correlate with galaxy disks. Disk-grown pseudobulges are intermediate in properties between bulges and disks. It has been unclear whether they do or do not correlate with black holes in the same way that bulges do, because too few pseudobulges were classified to provide a clear result. At stake are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and galaxies with pseudobulges grow as low-level Seyferts. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.Comment: 6 pages, 3 Postscript figures, 1 table; to appear in Nature (20 January 2011

    New Experimental Limits on Macroscopic Forces Below 100 Microns

    Full text link
    Results of an experimental search for new macroscopic forces with Yukawa range between 5 and 500 microns are presented. The experiment uses 1 kHz mechanical oscillators as test masses with a stiff conducting shield between them to suppress backgrounds. No signal is observed above the instrumental thermal noise after 22 hours of integration time. These results provide the strongest limits to date between 10 and 100 microns, improve on previous limits by as much as three orders of magnitude, and rule out half of the remaining parameter space for predictions of string-inspired models with low-energy supersymmetry breaking. New forces of four times gravitational strength or greater are excluded at the 95% confidence level for interaction ranges between 200 and 500 microns.Comment: 25 Pages, 7 Figures: Minor Correction

    3D-to-2D morphology manipulation of sputter-deposited nanoscale silver films on weakly interacting substrates via selective nitrogen deployment for multifunctional metal contacts

    Get PDF
    The ability to reverse the inherent tendency of noble metals to grow in an uncontrolled three-dimensional (3D) fashion on weakly interacting substrates, including two-dimensional (2D) materials and oxides, is essential for the fabrication of high-quality multifunctional metal contacts in key enabling devices. In this study, we show that this can be effectively achieved by deploying nitrogen (N2) gas with high temporal precision during magnetron sputtering of nanoscale silver (Ag) islands and layers on silicon dioxide (SiO2) substrates. We employ real-time in situ film growth monitoring using spectroscopic ellipsometry, along with optical modeling in the framework of the finite-difference time-domain method, and establish that localized surface plasmon resonance (LSPR) from nanoscale Ag islands can be used to gauge the evolution of surface morphology of discontinuous layers up to a SiO2 substrate area coverage of ∼70%. Such analysis, in combination with data on the evolution of room-temperature resistivity of electrically conductive layers, reveals that presence of N2 in the sputtering gas atmosphere throughout all film-formation stages: (i) promotes 2D growth and smooth film surfaces and (ii) leads to an increase of the continuous-layer electrical resistivity by ∼30% compared to Ag films grown in a pure argon (Ar) ambient atmosphere. Detailed ex situ nanoscale structural analyses suggest that N2 favors 2D morphology by suppressing island coalescence rates during initial growth stages, while it causes interruption of local epitaxial growth on Ag crystals. Using these insights, we deposit Ag layers by deploying N2 selectively, either during the early precoalescence growth stages or after coalescence completion. We show that early N2 deployment leads to 2D morphology without affecting the Ag-layer resistivity, while postcoalescence introduction of N2 in the gas atmosphere further promotes formation of three-dimensional (3D) nanostructures and roughness at the film growth front. In a broader context this study generates knowledge that is relevant for the development of (i) single-step growth manipulation strategies based on selective deployment of surfactant species and (ii) real-time methodologies for tracking film and nanostructure morphological evolution using LSPR

    Circumnuclear Structures in Megamaser Host Galaxies

    Get PDF
    Using the Hubble Space Telescope, we identify circumnuclear (100-500 pc scale) structures in nine new H2O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the similar to 100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks

    Oral Health Status, Knowledge, and Practices in an Amish Population

    Full text link
    This study was conducted in the summer of 1985 to assess the oral health status, knowledge, and practices of an Amish population in southwest Michigan. Dental caries experience, periodontal health, and oral hygiene status were recorded using decayed, missing, and filled surfaces (DMFS), periodontal index (PI), and simplified oral hygiene index (OHI-S). Data on oral health knowledge and practices were collected by interviews using a structured questionnaire. Results showed significantly lower levels of disease among Amish. DMFS scores for 5–17-year-old Amish children were almost half that of the US general population (NIDR 1979–80). PI score of all ages combined was 2.0, which was 3.6 times lower than a national sample (1971–74). Lower levels of disease in Amish could be related to their way of life and dietary patterns. A relatively higher level of unmet need for prosthodontic care, inadequate oral health knowledge, and barriers to dental care in the study population emphasize the need for dental public health and health education programs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65488/1/j.1752-7325.1988.tb03184.x.pd

    An Over-Massive Black Hole in the Compact Lenticular Galaxy NGC1277

    Get PDF
    All massive galaxies likely have supermassive black holes at their centers, and the masses of the black holes are known to correlate with properties of the host galaxy bulge component. Several explanations have been proposed for the existence of these locally-established empirical relationships; they include the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, or galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are thus important for distinguishing between various theoretical models of galaxy evolution, and they further form the basis for all black hole mass measurements at large distances. In particular, observations have shown that the mass of the black hole is typically 0.1% of the stellar bulge mass of the galaxy. The small galaxy NGC4486B currently has the largest published fraction of its mass in a black hole at 11%. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, disky galaxy with a mass of 1.2 x 10^11 Msun. From the data, we determine that the mass of the central black hole is 1.7 x 10^10 Msun, or 59% its bulge mass. Five other compact galaxies have properties similar to NGC 1277 and therefore may also contain over-sized black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the normal black hole mass scaling relations.Comment: 7 pages. 6 figures. Nature. Animation at http://www.mpia.de/~bosch/blackholes.htm

    Heterotic Line Bundle Standard Models

    Get PDF
    In a previous publication, arXiv:1106.4804, we have found 200 models from heterotic Calabi-Yau compactifications with line bundles, which lead to standard models after taking appropriate quotients by a discrete symmetry and introducing Wilson lines. In this paper, we construct the resulting standard models explicitly, compute their spectrum including Higgs multiplets, and analyze some of their basic properties. After removing redundancies we find about 400 downstairs models, each with the precise matter spectrum of the supersymmetric standard model, with one, two or three pairs of Higgs doublets and no exotics of any kind. In addition to the standard model gauge group, up to four Green-Schwarz anomalous U(1) symmetries are present in these models, which constrain the allowed operators in the four-dimensional effective supergravity. The vector bosons associated to these anomalous U(1) symmetries are massive. We explicitly compute the spectrum of allowed operators for each model and present the results, together with the defining data of the models, in a database of standard models accessible at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html. Based on these results we analyze elementary phenomenological properties. For example, for about 200 models all dimension four and five proton decay violating operators are forbidden by the additional U(1) symmetries.Comment: 55 pages, Latex, 3 pdf figure

    Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.

    Get PDF
    Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood. Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting. Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero. Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance

    Successful treatment of fusarium solani ecthyma gangrenosum in a patient affected by leukocyte adhesion deficiency type 1 with granulocytes transfusions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecthyma gangrenosum (EG) manifests as a skin lesion affecting patients suffering extreme neutropenia and is commonly associated with <it>Pseudomonas aeruginosa </it>in immunocompromised patients. Leukocyte adhesion deficiency I (LAD I) which count among primary immunodeficiency syndromes of the innate immunity, is an autosomal recessive disorder characterized in its severe phenotype by a complete defect in CD18 expression on neutrophils, delayed cord separation, chronic skin ulcers mainly due to recurrent bacterial and fungal infections, leucocytosis with high numbers of circulating neutrophils and an accumulation of abnormally low number of neutrophils at sites of infection.</p> <p>Case Presentation</p> <p>We report at our knowledge the first case of a child affected by LAD-1, who experienced during her disease course a multi-bacterial and fungal EG lesion caused by <it>fusarium solani</it>. Despite targeted antibiotics and anti-fungi therapy, the lesion extended for as long as 18 months and only massive granulocytes pockets transfusions in association with G-CSF had the capacity to cure this lesion.</p> <p>Conclusion</p> <p>We propose that granulocytes pockets transfusions will be beneficial to heal EG especially in severely immunocompromised patients.</p

    Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen

    Get PDF
    Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′- phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves upregulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment
    corecore