677 research outputs found

    Dynamics of O(N) chiral supersymmetry at finite energy density

    Get PDF
    We consider an O(N) version of a massive, interacting, chiral supersymmetry model solved exactly in the large N limit. We demonstrate that the system approaches a stable attractor at high energy densities, corresponding to a non-perturbative state for which the relevant field quanta are massless. The state is one of spontaneously broken O(N), which, due to the influence of supersymmetry, does not become restored at high energies. Introducing soft supersymmetry breaking to the Lagrangian results in scalar masses at the soft breaking scale m_s independent of the mass scale of supersymmetry mu, with even smaller masses for the fermions.Comment: 9 pages, 4 figure

    Out of Equilibrium Dynamics of Supersymmetry at High Energy Density

    Get PDF
    We investigate the out of equilibrium dynamics of global chiral supersymmetry at finite energy density. We concentrate on two specific models. The first is the massive Wess-Zumino model which we study in a selfconsistent one-loop approximation. We find that for energy densities above a certain threshold, the fields are driven dynamically to a point in field space at which the fermionic component of the superfield is massless. The state, however is found to be unstable, indicating a breakdown of the one-loop approximation. To investigate further, we consider an O(N) massive chiral model which is solved exactly in the large NN limit. For sufficiently high energy densities, we find that for late times the fields reach a nonperturbative minimum of the effective potential degenerate with the perturbative minimum. This minimum is a true attractor for O(N) invariant states at high energy densities, and this provides a mechanism for determining which of the otherwise degenerate vacua is chosen by the dynamics. The final state for large energy density is a cloud of massless particles (both bosons and fermions) around this new nonperturbative supersymmetric minimum. By introducing boson masses which softly break the supersymmetry, we demonstrate a see-saw mechanism for generating small fermion masses. We discuss some of the cosmological implications of our results.Comment: 31 pages, 15 figure

    Gene-environment interactions in the causation of neural tube defects : folate deficiency increases susceptibility conferred by loss of Pax3 function

    Get PDF
    Risk of neural tube defects (NTDs) is determined by genetic and environmental factors, among which folate status appears to play a key role. However, the precise nature of the link between low folate status and NTDs is poorly understood, and it remains unclear how folic acid prevents NTDs. We investigated the effect of folate level on risk of NTDs in splotch (Sp(2)(H)) mice, which carry a mutation in Pax3. Dietary folate restriction results in reduced maternal blood folate, elevated plasma homocysteine and reduced embryonic folate content. Folate deficiency does not cause NTDs in wild-type mice, but causes a significant increase in cranial NTDs among Sp(2)(H) embryos, demonstrating a gene-environment interaction. Control treatments, in which intermediate levels of folate are supplied, suggest that NTD risk is related to embryonic folate concentration, not maternal blood folate concentration. Notably, the effect of folate deficiency appears more deleterious in female embryos than males, since defects are not prevented by exogenous folic acid. Folate-deficient embryos exhibit developmental delay and growth retardation. However, folate content normalized to protein content is appropriate for developmental stage, suggesting that folate availability places a tight limit on growth and development. Folate-deficient embryos also exhibit a reduced ratio of s-adenosylmethionine (SAM) to s-adenosylhomocysteine (SAH). This could indicate inhibition of the methylation cycle, but we did not detect any diminution in global DNA methylation, in contrast to embryos in which the methylation cycle was specifically inhibited. Hence, folate deficiency increases the risk of NTDs in genetically predisposed splotch embryos, probably via embryonic growth retardation

    Genetic and phenotypic characterization of African goat populations to prioritize conservation and production efforts for small-holder farmers in sub-Saharan Africa

    Get PDF
    Food production systems in Africa depend heavily on the use of locally adapted animals. Goats are critical to small-holder farmers being easier to acquire, maintain, and act as scavengers in sparse pasture. Indigenous goats have undergone generations of adaptation and genetic isolation that have led to great phenotypic variation. These indigenous goats serve as a genetic reservoir for the identification of genes important to environmental adaptation, disease resistance, and improved productivity under local conditions. The immediate goal is to characterize African goat populations to prioritize conservation and production efforts and to develop genomic tools for use in selective breeding programs. We have established a standardized phenotypic scoring system to characterize goats including geographical information data, body measurements, photo characterization, and DNA. To date, 2,443 goats from 12 countries, representing 46 breeds have been sampled. Using the 50K goat beadchip, we report parameters of population structure of 620 African goats

    Cosmological distance indicators

    Full text link
    We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time delays from strongly lensed quasars currently provide constraints on H0H_0 with < 4% uncertainty, and with 1% within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to z <~ 0.8 with galaxies and z ~ 2 with Ly-α\alpha forest, providing precise distance measurements and H0H_0 with < 2% uncertainty in flat Λ\LambdaCDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at z ~ 0.8 and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach 1% uncertainty in determining H0H_0, to assess the current tension in H0H_0 measurements that could indicate new physics.Comment: Review article accepted for publication in Space Science Reviews (Springer), 45 pages, 10 figures. Chapter of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Ag

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
    corecore