156 research outputs found

    Beauty is Distractive: Particle production during multifield inflation

    Full text link
    We consider a two-dimensional model of inflation, where the inflationary trajectory is "deformed" by a grazing encounter with an Extra Species/Symmetry Point (ESP) after the observable cosmological scales have left the Hubble radius. The encounter entails a sudden production of particles, whose backreaction causes a bending of the trajectory and a temporary decrease in speed, both of which are sensitive to initial conditions. This "modulated" effect leads to an additional contribution to the curvature perturbation, which can be dominant if the encounter is close. We compute associated non-Gaussianities, the bispectrum and its scale dependence as well as the trispectrum, which are potentially detectable in many cases. In addition, we consider a direct modulation of the coupling to the light field at the ESP via a modulaton field, a mixed scenario whereby the modulaton is identified with a second inflaton, and an extended Extra Species Locus (ESL); all of these scenarios lead to similar additional contributions to observables. We conclude that inflaton interactions throughout inflation are strongly constrained if primordial non-Gaussianities remain unobserved in current experiments such as PLANCK. If they are observed, an ESP encounter leaves additional signatures on smaller scales which may be used to identify the model.Comment: 41 pages, 6 figures; v2: references and minor clarifications added, conclusions unchange

    GKZ-Generalized Hypergeometric Systems in Mirror Symmetry of Calabi-Yau Hypersurfaces

    Full text link
    We present a detailed study of the generalized hypergeometric system introduced by Gel'fand, Kapranov and Zelevinski (GKZ-hypergeometric system) in the context of toric geometry. GKZ systems arise naturally in the moduli theory of Calabi-Yau toric varieties, and play an important role in applications of the mirror symmetry. We find that the Gr\"obner basis for the so-called toric ideal determines a finite set of differential operators for the local solutions of the GKZ system. At the special point called the large radius limit, we find a close relationship between the principal parts of the operators in the GKZ system and the intersection ring of a toric variety. As applications, we analyze general three dimensional hypersurfaces of Fermat and non-Fermat types with Hodge numbers up to h1,1=3h^{1,1}=3. We also find and analyze several non Landau-Ginzburg models which are related to singular models.Comment: 55 pages, 3 Postscript figures, harvma

    Extrapolating SMBH correlations down the mass scale: the case for IMBHs in globular clusters

    Full text link
    Empirical evidence for both stellar mass black holes M_bh<10^2 M_sun) and supermassive black holes (SMBHs, M_bh>10^5 M_sun) is well established. Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is correlated with the bulge mass, and even more strongly with the central stellar velocity dispersion sigma_c, the `M-sigma' relation. On the other hand, evidence for "intermediate-mass" black holes (IMBHs, with masses in the range 1^2 - 10^5 M_sun) is relatively sparse, with only a few mass measurements reported in globular clusters (GCs), dwarf galaxies and low-mass AGNs. We explore the question of whether globular clusters extend the M-sigma relationship for galaxies to lower black hole masses and find that available data for globular clusters are consistent with the extrapolation of this relationship. We use this extrapolated M-sigma relationship to predict the putative black hole masses of those globular clusters where existence of central IMBH was proposed. We discuss how globular clusters can be used as a constraint on theories making specific predictions for the low-mass end of the M-sigma relation.Comment: 14 pages, 3 figures, accepted for publication in Astrophysics and Space Science; fixed typos and a quote in Sec.

    Fertility, Living Arrangements, Care and Mobility

    Get PDF
    There are four main interconnecting themes around which the contributions in this book are based. This introductory chapter aims to establish the broad context for the chapters that follow by discussing each of the themes. It does so by setting these themes within the overarching demographic challenge of the twenty-first century – demographic ageing. Each chapter is introduced in the context of the specific theme to which it primarily relates and there is a summary of the data sets used by the contributors to illustrate the wide range of cross-sectional and longitudinal data analysed

    Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets

    Full text link
    The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole's accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a_* of the black hole (|a_*| < 1). The ten spins that have so far been measured by this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2, 6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405) who find no evidence for a correlation between the power of ballistic jets and black hole spi

    Extremal Bundles on Calabi-Yau Threefolds

    Get PDF
    We study constructions of stable holomorphic vector bundles on Calabi–Yau threefolds, especially those with exact anomaly cancellation which we call extremal. By going through the known databases we find that such examples are rare in general and can be ruled out for the spectral cover construction for all elliptic threefolds. We then introduce a general Hartshorne–Serre construction and use it to find extremal bundles of general ranks and study their stability, as well as computing their Chern numbers. Based on both existing and our new constructions, we revisit the DRY conjecture for the existence of stable sheaves on Calabi–threefolds, and provide theoretical and numerical evidence for its correctness. Our construction can be easily generalized to bundles with no extremal conditions imposed

    Classical inflaton field induced creation of superheavy dark matter

    Get PDF
    We calculate analytically and numerically the production of superheavy dark matter (X) when it is coupled to the inflaton field \phi within the context of a slow-roll m_\phi^2 \phi^2/2 inflationary model with coupling g^2 X^2 \phi^2/2. We find that X particles with a mass as large as 1000 H_i, where H_i is the value of the Hubble expansion rate at the end of inflation, can be produced in sufficient abundance to be cosmologically significant today. This means that superheavy dark matter may have a mass of up to 10^{-3} Planck mass. We also derive a simple formula that can be used to estimate particle production as a result of a quantum field's interaction with a general class of homogeneous classical fields. Finally, we note that the combined effect of the inflaton field and the gravitational field on the X field causes the production to be a nonmonotonic function of g^2.Comment: 42 page LaTeX file with 8 PostScript figures included with eps

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age
    • …
    corecore