350 research outputs found
Computation with narrow CTCs
We examine some variants of computation with closed timelike curves (CTCs),
where various restrictions are imposed on the memory of the computer, and the
information carrying capacity and range of the CTC. We give full
characterizations of the classes of languages recognized by polynomial time
probabilistic and quantum computers that can send a single classical bit to
their own past. Such narrow CTCs are demonstrated to add the power of limited
nondeterminism to deterministic computers, and lead to exponential speedup in
constant-space probabilistic and quantum computation. We show that, given a
time machine with constant negative delay, one can implement CTC-based
computations without the need to know about the runtime beforehand.Comment: 16 pages. A few typo was correcte
Fractional helicity, Lorentz symmetry breaking, compactification and anyons
We construct the covariant, spinor sets of relativistic wave equations for a
massless field on the basis of the two copies of the R-deformed Heisenberg
algebra. For the finite-dimensional representations of the algebra they give a
universal description of the states with integer and half-integer helicity. The
infinite-dimensional representations correspond formally to the massless states
with fractional (real) helicity. The solutions of the latter type, however,
break down the (3+1) Poincar\'e invariance to the (2+1) Poincar\'e
invariance, and via a compactification on a circle a consistent theory for
massive anyons in =2+1 is produced. A general analysis of the ``helicity
equation'' shows that the (3+1) Poincar\'e group has no massless irreducible
representations with the trivial non-compact part of the little group
constructed on the basis of the infinite-dimensional representations of
sl(2,\CC). This result is in contrast with the massive case where integer and
half-integer spin states can be described on the basis of such representations,
and means, in particular, that the (3+1) Dirac positive energy covariant
equations have no massless limit.Comment: 19 pages; minor changes, references added. To appear in Nucl. Phys.
Probing Lorentz and CPT violation with space-based experiments
Space-based experiments offer sensitivity to numerous unmeasured effects
involving Lorentz and CPT violation. We provide a classification of clock
sensitivities and present explicit expressions for time variations arising in
such experiments from nonzero coefficients in the Lorentz- and CPT-violating
Standard-Model Extension.Comment: 15 page
Threshold analyses and Lorentz violation
In the context of threshold investigations of Lorentz violation, we discuss
the fundamental principle of coordinate invariance, the role of an effective
dynamical framework, and the conditions of positivity and causality. Our
analysis excludes a variety of previously considered Lorentz-breaking
parameters and opens an avenue for viable dispersion-relation investigations of
Lorentz violation.Comment: 9 page
Overview of the SME: Implications and Phenomenology of Lorentz Violation
The Standard Model Extension (SME) provides the most general
observer-independent field theoretical framework for investigations of Lorentz
violation. The SME lagrangian by definition contains all Lorentz-violating
interaction terms that can be written as observer scalars and that involve
particle fields in the Standard Model and gravitational fields in a generalized
theory of gravity. This includes all possible terms that could arise from a
process of spontaneous Lorentz violation in the context of a more fundamental
theory, as well as terms that explicitly break Lorentz symmetry. An overview of
the SME is presented, including its motivations and construction. Some of the
theoretical issues arising in the case of spontaneous Lorentz violation are
discussed, including the question of what happens to the Nambu-Goldstone modes
when Lorentz symmetry is spontaneously violated and whether a Higgs mechanism
can occur. A minimal version of the SME in flat Minkowski spacetime that
maintains gauge invariance and power-counting renormalizability is used to
search for leading-order signals of Lorentz violation. Recent Lorentz tests in
QED systems are examined, including experiments with photons, particle and
atomic experiments, proposed experiments in space and experiments with a
spin-polarized torsion pendulum.Comment: 40 pages, Talk presented at Special Relativity: Will it Survive the
Next 100 Years? Potsdam, Germany, February, 200
Implications of Space-Time foam for Entanglement Correlations of Neutral Kaons
The role of invariance and consequences for bipartite entanglement of
neutral (K) mesons are discussed. A relaxation of leads to a modification
of the entanglement which is known as the effect. The relaxation of
assumptions required to prove the theorem are examined within the context
of models of space-time foam. It is shown that the evasion of the EPR type
entanglement implied by (which is connected with spin statistics) is
rather elusive. Relaxation of locality (through non-commutative geometry) or
the introduction of decoherence by themselves do not lead to a destruction of
the entanglement. So far we find only one model which is based on non-critical
strings and D-particle capture and recoil that leads to a stochastic
contribution to the space-time metric and consequent change in the neutral
meson bipartite entanglement. The lack of an omega effect is demonstrated for a
class of models based on thermal like baths which are generally considered as
generic models of decoherence
Lorentz and CPT Violation in Neutrinos
A general formalism is presented for violations of Lorentz and CPT symmetry
in the neutrino sector. The effective hamiltonian for neutrino propagation in
the presence of Lorentz and CPT violation is derived, and its properties are
studied. Possible definitive signals in existing and future
neutrino-oscillation experiments are discussed. Among the predictions are
direction-dependent effects, including neutrino-antineutrino mixing, sidereal
and annual variations, and compass asymmetries. Other consequences of Lorentz
and CPT violation involve unconventional energy dependences in oscillation
lengths and mixing angles. A variety of simple models both with and without
neutrino masses are developed to illustrate key physical effects. The
attainable sensitivities to coefficients for Lorentz violation in the
Standard-Model Extension are estimated for various types of experiments. Many
experiments have potential sensitivity to Planck-suppressed effects, comparable
to the best tests in other sectors. The lack of existing experimental
constraints, the wide range of available coefficient space, and the variety of
novel effects imply that some or perhaps even all of the existing data on
neutrino oscillations might be due to Lorentz and CPT violation.Comment: 25 pages REVTe
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
Grain Surface Models and Data for Astrochemistry
AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
- …