18 research outputs found

    Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells

    Get PDF
    Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase-cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a 'folate trap'. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.In this study, Green, Marttila, Kiweler et al. characterize one-carbon metabolism rewiring in response to a dual MTHFD1 and MTHFD2 inhibitor. This work provides insight into one-carbon fluxes, and reveals a previously uncharacterized vulnerability in cancer cells created by folate trapping

    Wnt inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma

    Get PDF
    Wnt pathway targeting is of high clinical interest for treating bone loss disorders such as osteoporosis. These therapies inhibit the action of negative regulators of osteoblastic Wnt signaling. The report that Wnt inhibitory factor 1 (WIF1) was epigenetically silenced via promoter DNA methylation in osteosarcoma (OS) raised potential concerns for such treatment approaches. Here we confirm that Wif1 expression is frequently reduced in OS. However, we demonstrate that silencing is not driven by DNA methylation. Treatment of mouse and human OS cells showed that Wif1 expression was robustly induced by HDAC inhibition but not by methylation inhibition. Consistent with HDAC dependent silencing, the Wif1 locus in OS was characterized by low acetylation levels and a bivalent H3K4/H3K27-trimethylation state. Wif1 expression marked late stages of normal osteoblast maturation and stratified OS tumors based on differentiation stage across species. Culture of OS cells under differentiation inductive conditions increased expression of Wif1. Together these results demonstrate that Wif1 is not targeted for silencing by DNA methylation in OS. Instead, the reduced expression of Wif1 in OS cells is in context with their stage in differentiation

    Phenotypes of undiagnosed adults with actionable OTC and GLA variants

    No full text
    Summary: Inherited metabolic disorders (IMDs) are variably expressive, complicating identification of affected individuals. A genotype-first approach can identify individuals at risk for morbidity and mortality from undiagnosed IMDs and can lead to protocols that improve clinical detection, counseling, and management. Using data from 57,340 participants in two hospital biobanks, we assessed the frequency and phenotypes of individuals with pathogenic/likely pathogenic variants (PLPVs) in two IMD genes: GLA, associated with Fabry disease, and OTC, associated with ornithine transcarbamylase deficiency. Approximately 1 in 19,100 participants harbored an undiagnosed PLPV in GLA or OTC. We identified three individuals (2 male, 1 female) with PLPVs in GLA, all of whom were undiagnosed, and three individuals (3 female) with PLPVs in OTC, two of whom were undiagnosed. All three individuals with PLPVs in GLA (100%) had symptoms suggestive of mild Fabry disease, and one individual (14.2%) had an ischemic stroke at age 33, likely indicating the presence of classic disease. No individuals with PLPVs in OTC had documented hyperammonemia despite exposure to catabolic states, but all (100%) had chronic symptoms suggestive of attenuated disease, including mood disorders and migraines. Our findings suggest that GLA and OTC variants identified via a genotype-first approach are of high penetrance and that population screening of these genes can be used to facilitate stepwise phenotyping and appropriate care

    RARγ is a negative regulator of osteoclastogenesis

    No full text
    Vitamin A is known to influence post-natal bone content, with excess intake being associated with reduced bone mineral density and increased fracture risk. Despite this, the roles retinoids play in regulating osteoclastogenesis, particularly in vivo, remain unresolved. This study therefore aimed to determine the effect of loss of retinoic acid receptors (RAR)α or RARγ on bone mass (analyzed by histomorphometry and dual-energy X-ray absorptiometry) and osteoclastogenesis in mice in vivo. RARγ null mice had significantly less trabecular bone at 8 weeks of age compared to wildtype littermates. In contrast, no change in trabecular bone mass was detected in RARα null mice at this age. Further histomorphometric analysis revealed a significantly greater osteoclast surface in bones from 8-week-old RARγ null male mice. This in vivo effect was cell lineage autonomous, and was associated with increased osteoclastogenesis in vitro from hematopoietic cells obtained from 8-week-old RARγ null male mice. The use of highly selective agonists in RANKL-induced osteoclast differentiation of wild type mouse whole bone marrow cells and RAW264.7 cells in vitro showed a stronger inhibitory effect of RARγ than RARα agonists, suggesting that RARγ is a more potent inhibitor of osteoclastogenesis. Furthermore, NFAT activation was also more strongly inhibited by RARγ than RARα agonists. While RARα and RARγ antagonists did not significantly affect osteoclast numbers in vitro, larger osteoclasts were observed in cultures stimulated with the antagonists, suggesting increased osteoclast fusion. Further investigation into the effect of retinoids in vivo revealed that oral administration of 5 mg/kg/day ATRA for 10 days protected against bone loss induced by granulocyte colony-stimulating factor (G-CSF) by inhibiting the pro-osteoclastogenic action of G-CSF. Collectively, our data indicates a physiological role for RARγ as a negative regulator of osteoclastogenesis in vivo and in vitro, and reveals distinct influences of RARα and RARγ in bone structure regulation

    Common and rare von Willebrand factor (VWF) coding variants, VWF levels, and factor VIII levels in African Americans: the NHLBI exome sequencing project

    No full text
    Several rare European von Willebrand disease missense variants of VWF (including p.Arg2185Gln and p.His817Gln) were recently reported to be common in apparently healthy African Americans (AAs). Using data from the NHLBI Exome Sequencing Project, we assessed the association of these and other VWF coding variants with von Willebrand factor (VWF) and factor VIII (FVIII) levels in 4468 AAs. Of 30 nonsynonymous VWF variants, 6 were significantly and independently associated (P < .001) with levels of VWF and/or FVIII. Each additional copy of the common VWF variants encoding p.Thr789Ala or p.Asp1472His was associated with 6 to 8 IU/dL higher VWF levels. The VWF variant encoding p.Arg2185Gln was associated with 7 to 13 IU/dL lower VWF and FVIII levels. The type 2N-related VWF variant encoding p.His817Gln was associated with 17 IU/dL lower FVIII level but normal VWF level. A novel, rare missense VWF variant that predicts disruption of an O-glycosylation site (p.Ser1486Leu) and a rare variant encoding p.Arg2287Trp were each associated with 30 to 40 IU/dL lower VWF level (P < .001). In summary, several common and rare VWF missense variants contribute to phenotypic differences in VWF and FVIII among AAs

    Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells

    Get PDF
    Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase–cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a ‘folate trap’. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism
    corecore