461 research outputs found

    Oligomer Composition and Oxygen Binding of the Hemocyanin of the Blue Crab Callinectes sapidus

    Get PDF
    In the blue crab, the ratio of hexamers to dodecamers of the O2 carrier hemocyanin varies in natural populations. Isolated dodecamers have a lower O2 affinity and greater cooperativity than isolated hexamers. The difference in O2 binding can also be resolved in native mixtures that differ in polymer composition. A high content of dodecamers in native mixtures is, in fact, correlated with the presence of an invariant polypeptide chain that is believed to link two hexamers to form dodecamers. On the other hand, the content of a variable chain that has been postulated to play a role in hexamer pairing is correlated with a low content of dodecamers. The variable, but not the invariant, monomers can be present in levels so low that they must not be represented in all dodecamers in the blood

    In search of future earths: Assessing the possibility of finding earth analogues in the later stages of their habitable lifetimes

    Full text link
    © Copyright 2015, Mary Ann Liebert, Inc. Earth will become uninhabitable within 2-3 Gyr as a result of the increasing luminosity of the Sun changing the boundaries of the habitable zone (HZ). Predictions about the future of habitable conditions on Earth include declining species diversity and habitat extent, ocean loss, and changes to geochemical cycles. Testing these predictions is difficult, but the discovery of a planet that is an analogue to future Earth could provide the means to test them. This planet would need to have an Earth-like biosphere history and to be approaching the inner edge of the HZ at present. Here, we assess the possibility of finding such a planet and discuss the benefits of analyzing older Earths. Finding an old-Earth analogue in nearby star systems would be ideal, because this would allow for atmospheric characterization. Hence, as an illustrative example, G stars within 10pc of the Sun are assessed as potential old-Earth-analog hosts. Six of these represent good potential hosts. For each system, a hypothetical Earth analogue is placed at locations within the continuously habitable zone (CHZ) that would allow enough time for Earth-like biosphere development. Surface temperature evolution over the host star's main sequence lifetime (assessed by using a simple climate model) is used to determine whether the planet would be in the right stage of its late-habitable lifetime to exhibit detectable biosignatures. The best candidate, in terms of the chances of planet formation in the CHZ and of biosignature detection, is 61 Virginis. However, planet formation studies suggest that only a small fraction (0.36%) of G stars in the solar neighborhood could host an old-Earth analogue. If the development of Earth-like biospheres is rare, requiring a sequence of low-probability events to occur, biosphere evolution models suggest they are rarer still, with only thousands being present in the Galaxy as a whole

    Measuring patient-perceived quality of care in US hospitals using Twitter

    Get PDF
    BACKGROUND: Patients routinely use Twitter to share feedback about their experience receiving healthcare. Identifying and analysing the content of posts sent to hospitals may provide a novel real-time measure of quality, supplementing traditional, survey-based approaches. OBJECTIVE: To assess the use of Twitter as a supplemental data stream for measuring patient-perceived quality of care in US hospitals and compare patient sentiments about hospitals with established quality measures. DESIGN: 404 065 tweets directed to 2349 US hospitals over a 1-year period were classified as having to do with patient experience using a machine learning approach. Sentiment was calculated for these tweets using natural language processing. 11 602 tweets were manually categorised into patient experience topics. Finally, hospitals with ≥50 patient experience tweets were surveyed to understand how they use Twitter to interact with patients. KEY RESULTS: Roughly half of the hospitals in the US have a presence on Twitter. Of the tweets directed toward these hospitals, 34 725 (9.4%) were related to patient experience and covered diverse topics. Analyses limited to hospitals with ≥50 patient experience tweets revealed that they were more active on Twitter, more likely to be below the national median of Medicare patients (p<0.001) and above the national median for nurse/patient ratio (p=0.006), and to be a non-profit hospital (p<0.001). After adjusting for hospital characteristics, we found that Twitter sentiment was not associated with Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings (but having a Twitter account was), although there was a weak association with 30-day hospital readmission rates (p=0.003). CONCLUSIONS: Tweets describing patient experiences in hospitals cover a wide range of patient care aspects and can be identified using automated approaches. These tweets represent a potentially untapped indicator of quality and may be valuable to patients, researchers, policy makers and hospital administrators

    Anomalous microwave emission from spinning nanodiamonds around stars

    Get PDF
    Several interstellar environments produce 'anomalous microwave emission' (AME), with brightness peaks at tens-of-gigahertz frequencies. The emission's origins are uncertain -- rapidly spinning nanoparticles could emit electric-dipole radiation, but the polycyclic aromatic hydrocarbons that have been proposed as the carrier are now found not to correlate with Galactic AME signals. The difficulty is in identifying co-spatial sources over long lines of sight. Here we identify AME in three proto-planetary discs. These are the only known systems that host hydrogenated nanodiamonds, in contrast to the very common detection of polycyclic aromatic hydrocarbons. Using spectroscopy, the nanodiamonds are located close to the host stars, at physically well-constrained temperatures. Developing disc models, we reproduce the emission with diamonds 0.75--1.1 nm in radius, holding <= 1-2% of the carbon budget. Ratios of microwave emission to stellar luminosity are approximately constant, allowing nanodiamonds to be ubiquitous but emitting below detection thresholds in many star systems. This result is compatible with the findings with similar-sized diamonds found within Solar System meteorites. As nanodiamond spectral absorption is seen in interstellar sightlines, these particles are also a candidate for generating galaxy-scale AME

    Analysis of the Herschel DEBRIS Sun-like star sample

    Get PDF
    This paper presents a study of circumstellar debris around Sun-like stars using data from the Herschel DEBRIS Key Programme. DEBRIS is an unbiased survey comprising the nearest ∼90 stars of each spectral type A-M. Analysis of the 275 F-K stars shows that excess emission from a debris disc was detected around 47 stars, giving a detection rate of 17.1 +2.6−2.3  per cent, with lower rates for later spectral types. For each target a blackbody spectrum was fitted to the dust emission to determine its fractional luminosity and temperature. The derived underlying distribution of fractional luminosity versus blackbody radius in the population showed that most detected discs are concentrated at f ∼ 10−5 and at temperatures corresponding to blackbody radii 7–40 au, which scales to ∼40 au for realistic dust properties (similar to the current Kuiper belt). Two outlying populations are also evident; five stars have exceptionally bright emission ( f > 5 × 10−5), and one has unusually hot dust <4 au. The excess emission distributions at all wavelengths were fitted with a steady-state evolution model, showing that these are compatible with all stars being born with a narrow belt that then undergoes collisional grinding. However, the model cannot explain the hot dust systems – likely originating in transient events – and bright emission systems – arising potentially from atypically massive discs or recent stirring. The emission from the present-day Kuiper belt is predicted to be close to the median of the population, suggesting that half of stars have either depleted their Kuiper belts (similar to the Solar system) or had a lower planetesimal formation efficiency.This work was supported by the European Union through European Research Council grant number 279973 (MCW, GMK). GMK was also supported by the Royal Society as a Royal Society University Research Fellow

    Dusty Planetary Systems

    Full text link
    Extensive photometric stellar surveys show that many main sequence stars show emission at infrared and longer wavelengths that is in excess of the stellar photosphere; this emission is thought to arise from circumstellar dust. The presence of dust disks is confirmed by spatially resolved imaging at infrared to millimeter wavelengths (tracing the dust thermal emission), and at optical to near infrared wavelengths (tracing the dust scattered light). Because the expected lifetime of these dust particles is much shorter than the age of the stars (>10 Myr), it is inferred that this solid material not primordial, i.e. the remaining from the placental cloud of gas and dust where the star was born, but instead is replenished by dust-producing planetesimals. These planetesimals are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our Solar system that produce the interplanetary dust that gives rise to the zodiacal light (tracing the inner component of the Solar system debris disk). The presence of these "debris disks" around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions. This chapter is divided in two parts. Part I discusses how the study of the Solar system debris disk and the study of debris disks around other stars can help us learn about the formation, evolution and diversity of planetary systems by shedding light on the frequency and timing of planetesimal formation, the location and physical properties of the planetesimals, the presence of long-period planets, and the dynamical and collisional evolution of the system. Part II reviews the physical processes that affect dust particles in the gas-free environment of a debris disk and their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets, Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201

    Kuiper belt structure around nearby super-Earth host stars

    Get PDF
    We present new observations of the Kuiper belt analogues around HD 38858 and HD 20794, hosts of super-Earth mass planets within 1 au. As two of the four nearby G-type stars (with HD 69830 and 61 Vir) that form the basis of a possible correlation between low-mass planets and debris disc brightness, these systems are of particular interest. The disc around HD 38858 is well resolved with Herschel and we constrain the disc geometry and radial structure. We also present a probable James Clerk Maxwell Telescope sub-mm continuum detection of the disc and a CO J = 2–1 upper limit. The disc around HD 20794 is much fainter and appears marginally resolved with Herschel, and is constrained to be less extended than the discs around 61 Vir and HD 38858. We also set limits on the radial location of hot dust recently detected around HD 20794 with near-IR interferometry. We present High Accuracy Radial velocity Planet Searcher upper limits on unseen planets in these four systems, ruling out additional super-Earths within a fewau, and Saturn-mass planets within 10 au. We consider the disc structure in the three systems with Kuiper belt analogues (HD 69830 has only a warm dust detection), concluding that 61 Vir and HD 38858 have greater radial disc extent than HD 20794. We speculate that the greater width is related to the greater minimum planet masses (10–20 M⊕ versus 3–5 M⊕), arising from an eccentric planetesimal population analogous to the Solar system’s scattered disc. We discuss alternative scenarios and possible means to distinguish among them.We thank the referee for a thoughtful review. This work was supported by the European Union through ERC grant number 279973 (GMK, LM, and MCW). LM also acknowledges support by both STFC and ESO through graduate studentships. MM, CL, FP, and SU acknowledge the Swiss National Science Foundation (SNSF) for the continuous support of the RV research programmes.This is the final published version. It first appeared at http://mnras.oxfordjournals.org/content/449/3/3121.abstract

    The JCMT Legacy Survey of the Gould Belt: Mapping 13CO and C 18O in Orion A

    Get PDF
    The Gould Belt Legacy Survey will map star-forming regions within 500 pc, using Heterodyne Array Receiver Programme (HARP), Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and Polarimeter 2 (POL-2) on the James Clerk Maxwell Telescope (JCMT). This paper describes HARP observations of the J= 3 → 2 transitions of 13CO and C18O towards Orion A. The 15 arcsec resolution observations cover 5 pc of the Orion filament, including OMC 1 (including BN–KL and Orion bar), OMC 2/3 and OMC 4, and allow a comparative study of the molecular gas properties throughout the star-forming cloud. The filament shows a velocity gradient of ∼1 km s−1 pc−1 between OMC 1, 2 and 3, and high-velocity emission is detected in both isotopologues. The Orion Nebula and Bar have the largest masses and linewidths, and dominate the mass and energetics of the high-velocity material. Compact, spatially resolved emission from CH3CN, 13CH3OH, SO, HCOOCH3, CH3CHO and CH3OCHO is detected towards the Orion Hot Core. The cloud is warm, with a median excitation temperature of ∼24 K; the Orion Bar has the highest excitation temperature gas, at >80 K. The C18O excitation temperature correlates well with the dust temperature (to within 40 per cent). The C18O emission is optically thin, and the 13CO emission is marginally optically thick; despite its high mass, OMC 1 shows the lowest opacities. A virial analysis indicates that Orion A is too massive for thermal or turbulent support, but is consistent with a model of a filamentary cloud that is threaded by helical magnetic fields. The variation of physical conditions across the cloud is reflected in the physical characteristics of the dust cores. We find similar core properties between starless and protostellar cores, but variations in core properties with position in the filament. The OMC 1 cores have the highest velocity dispersions and masses, followed by OMC 2/3 and OMC 4. The differing fragmentation of these cores may explain why OMC 1 has formed clusters of high-mass stars, whereas OMC 4 produces fewer, predominantly low-mass stars

    Stellar encounters as the origin of distant solar system objects in highly eccentric orbits

    Full text link
    The discovery of Sedna places new constraints on the origin and evolution of our solar system. Here we investigate the possibility that a close encounter with another star produced the observed edge of the Kuiper belt, at roughly 50 AU, and the highly elliptical orbit of Sedna. We show that a passing star probably scattered Sedna from the Kuiper Belt into its observed orbit. The likelihood that a planet at 60-80 AU can be scattered into Sedna's orbit is roughly 50%; this estimate depends critically on the geometry of the flyby. Even more interesting, though, is the roughly 10% chance that Sedna was captured from the outer disk of the passing star. Most captures have very high inclination orbits; detection of these objects would confirm the presence of extrasolar planets in our own Solar System.Comment: 9 pages, 3 figure

    Spatially Resolved Magnetic Field Structure in the Disk of a T Tauri Star

    Get PDF
    Magnetic fields in accretion disks play a dominant role during the star formation process but have hitherto been observationally poorly constrained. Field strengths have been inferred on T Tauri stars themselves and possibly in the innermost part of the accretion disk, but the strength and morphology of the field in the bulk of the disk have not been observed. Unresolved measurements of polarized emission (arising from elongated dust grains aligned perpendicular to the field) imply average fields aligned with the disks. Theoretically, the fields are expected to be largely toroidal, poloidal, or a mixture of the two, which imply different mechanisms for transporting angular momentum in the disks of actively accreting young stars such as HL Tau. Here we report resolved measurements of the polarized 1.25 mm continuum emission from HL Tau's disk. The magnetic field on a scale of 80 AU is coincident with the major axis (~210 AU diameter) of the disk. From this we conclude that the magnetic field inside the disk at this scale cannot be dominated by a vertical component, though a purely toroidal field does not fit the data well either. The unexpected morphology suggests that the magnetic field's role for the accretion of a T Tauri star is more complex than the current theoretical understanding.Comment: Accepted for publication in Natur
    corecore