142 research outputs found

    Child Health Care in Ireland

    Get PDF
    The Irish health care system is based on a complex and costly mix of private, statutory, and voluntary provisions. The majority of health care expenditure comes from the state, with a significant proportion of acute hospital care funded from private insurance, but there are relatively high out-of-pocket costs for most service users. There is free access to acute hospital care, but not for primary care, for all children. About 40% of the population have free access to primary care. Universal preventive public health services, including vaccination and immunization, newborn blood spot screening, and universal neonatal hearing screening are free. Major health challenges include poverty, obesity, drug and alcohol use, and mental health. The health care system has been dominated for the last 5 years by the impact of the current recession, which has led to very sharp cuts in health care expenditure. It is unclear if the necessary substantial reform of the system will happen. Government policy calls for a move toward a patient-centered, primary care-led system, but without very substantial transfers of resources and investment in Information and Communication Technology, this is unlikely to occur

    Guided self-help for mental health disorders in children and young people with chronic neurological conditions: A qualitative evaluation

    Get PDF
    Objective: Children with neurological conditions such as epilepsy are at high risk of developing mental health disorders. Guided self-help can be used to increase access to psychological therapies. When developing and evaluating interventions, it is important to obtain the views of service-users about their acceptability. A telephone-guided self-help intervention was used to treat common mental health difficulties in children and young people with neurological conditions. The intervention was not adapted in content to account for chronic illness. This study therefore reports on qualitative interviews with participants to determine the acceptability of the intervention. // Methods: Semi-structured interviews were conducted with 27 participants (25 parents and 2 young people) who had undertaken a telephone-delivered guided self-help intervention for common mental health difficulties in the context of a paediatric neurological condition. Transcripts were analysed thematically using the framework approach. // Results: Thirteen themes were extracted, organised into three main domains, which covered: the practicalities of telephone guided self-help treatment; the outcomes of the intervention; and the extent to which adaptation was needed for chronic illness. Most families found the intervention helpful in working towards their specific goals and noticed changes for the child and/or parents and family. // Conclusions: Participants had a positive experience of the intervention and the majority of parents found the standard intervention with individualised goals sufficient to meet the young person's mental health needs

    An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons

    Get PDF
    A new analytical inversion method has been developed to determine the regional and global emissions of long-lived atmospheric trace gases. It exploits in situ measurement data from three global networks and builds on backward simulations with a Lagrangian particle dispersion model. The emission information is extracted from the observed concentration increases over a baseline that is itself objectively determined by the inversion algorithm. The method was applied to two hydrofluorocarbons (HFC-134a, HFC-152a) and a hydrochlorofluorocarbon (HCFC-22) for the period January 2005 until March 2007. Detailed sensitivity studies with synthetic as well as with real measurement data were done to quantify the influence on the results of the a priori emissions and their uncertainties as well as of the observation and model errors. It was found that the global a posteriori emissions of HFC-134a, HFC-152a and HCFC-22 all increased from 2005 to 2006. Large increases (21%, 16%, 18%, respectively) from 2005 to 2006 were found for China, whereas the emission changes in North America (−9%, 23%, 17%, respectively) and Europe (11%, 11%, −4%, respectively) were mostly smaller and less systematic. For Europe, the a posteriori emissions of HFC-134a and HFC-152a were slightly higher than the a priori emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC). For HCFC-22, the a posteriori emissions for Europe were substantially (by almost a factor 2) higher than the a priori emissions used, which were based on HCFC consumption data reported to the United Nations Environment Programme (UNEP). Combined with the reported strongly decreasing HCFC consumption in Europe, this suggests a substantial time lag between the reported time of the HCFC-22 consumption and the actual time of the HCFC-22 emission. Conversely, in China where HCFC consumption is increasing rapidly according to the UNEP data, the a posteriori emissions are only about 40% of the a priori emissions. This reveals a substantial storage of HCFC-22 and potential for future emissions in China. Deficiencies in the geographical distribution of stations measuring halocarbons in relation to estimating regional emissions are also discussed in the paper. Applications of the inversion algorithm to other greenhouse gases such as methane, nitrous oxide or carbon dioxide are foreseen for the future

    Applying whole-genome studies of epigenetic regulation to study human disease

    Get PDF
    Epigenetics may be broadly defined as the study of processes that produce a heritable phenotype that is not strictly dependent on DNA sequence. The definition has traditionally been restricted to processes that occur in the cell’s nucleus, with the term ‘heritable’ having a loose meaning that can be applied to either the entire organism or single cells. For example, a process that produces a phenotype only in a specific cell type (for instance, chromatin-mediated maintenance of a differentiated state) is usually considered epigenetic even if it is not directly inherited, but instead must be re-established or actively maintained at each cell division. Given this definition, the field of epigenetics has long focused on proteins that affect DNA packaging, and thereby affect the utilization of the genetic information encoded in the DNA template. This focus extends to the enzymatic modification of those proteins, and to the enzymatic modification of the DNA template itself, primarily DNA methylation

    De novo intrachromosomal gene conversion from OPN1MW to OPN1LW in the male germline results in Blue Cone Monochromacy

    Get PDF
    X-linked cone dysfunction disorders such as Blue Cone Monochromacy and X-linked Cone Dystrophy are characterized by complete loss (of) or reduced L- and M- cone function due to defects in the OPN1LW/OPN1MW gene cluster. Here we investigated 24 affected males from 16 families with either a structurally intact gene cluster or at least one intact single (hybrid) gene but harbouring rare combinations of common SNPs in exon 3 in single or multiple OPN1LW and OPN1MW gene copies. We assessed twelve different OPN1LW/MW exon 3 haplotypes by semi-quantitative minigene splicing assay. Nine haplotypes resulted in aberrant splicing of ≥20% of transcripts including the known pathogenic haplotypes (i.e. ‘LIAVA’, ‘LVAVA’) with absent or minute amounts of correctly spliced transcripts, respectively. De novo formation of the ‘LIAVA’ haplotype derived from an ancestral less deleterious ‘LIAVS’ haplotype was observed in one family with strikingly different phenotypes among affected family members. We could establish intrachromosomal gene conversion in the male germline as underlying mechanism. Gene conversion in the OPN1LW/OPN1MW genes has been postulated, however, we are first to demonstrate a de novo gene conversion within the lineage of a pedigree

    Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model

    Get PDF
    Methyl chloride (CH3Cl) [CH subscript 3 Cl] is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion. Large uncertainties in estimates of its source and sink magnitudes and temporal and spatial variations currently exist. GEIA inventories and other bottom-up emission estimates are used to construct a priori maps of the surface fluxes of CH3Cl [CH subscript 3 Cl]. The Model of Atmospheric Transport and Chemistry (MATCH), driven by NCEP interannually varying meteorological data, is then used to simulate CH3Cl [CH subscript 3 Cl] mole fractions and quantify the time series of sensitivities of the mole fractions at each measurement site to the surface fluxes of various regional and global sources and sinks. We then implement the Kalman filter (with the unit pulse response method) to estimate the surface fluxes on regional/global scales with monthly resolution from January 2000 to December 2004. High frequency observations from the AGAGE, SOGE, NIES, and NOAA/ESRL HATS in situ networks and low frequency observations from the NOAA/ESRL HATS flask network are used to constrain the source and sink magnitudes. The inversion results indicate global total emissions around 4100 ± 470 Gg yr−1 [yr superscript -1] with very large emissions of 2200 ± 390 Gg yr−1 [yr superscript -1] from tropical plants, which turn out to be the largest single source in the CH3Cl [CH subscript 3 Cl] budget. Relative to their a priori annual estimates, the inversion increases global annual fungal and tropical emissions, and reduces the global oceanic source. The inversion implies greater seasonal and interannual oscillations of the natural sources and sink of CH3Cl [CH subscript 3 Cl] compared to the a priori. The inversion also reflects the strong effects of the 2002/2003 globally widespread heat waves and droughts on global emissions from tropical plants, biomass burning and salt marshes, and on the soil sink.United States. National Aeronautics and Space Administration (Grant NNX07AE89G)United States. National Aeronautics and Space Administration (Grant NAG5-12669)United States. National Aeronautics and Space Administration (Grant NNX07AF09G)United States. National Aeronautics and Space Administration (Grant NNX07AE87G)National Science Foundation (U.S.) (Grant ATM-0120468)United States. National Aeronautics and Space Administration (Grant NAG5-12099

    Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences

    Get PDF
    We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian (\u27marsupial\u27) species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation. ©2007 Nature Publishing Group

    The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CTCF is a versatile zinc finger DNA-binding protein that functions as a highly conserved epigenetic transcriptional regulator. CTCF is known to act as a chromosomal insulator, bind promoter regions, and facilitate long-range chromatin interactions. In mammals, CTCF is active in the regulatory regions of some genes that exhibit genomic imprinting, acting as insulator on only one parental allele to facilitate parent-specific expression. In <it>Drosophila</it>, CTCF acts as a chromatin insulator and is thought to be actively involved in the global organization of the genome.</p> <p>Results</p> <p>To determine whether CTCF regulates imprinting in <it>Drosophila</it>, we generated <it>CTCF </it>mutant alleles and assayed gene expression from the imprinted <it>Dp(1;f)LJ9 </it>mini-X chromosome in the presence of reduced <it>CTCF </it>expression. We observed disruption of the maternal imprint when <it>CTCF </it>levels were reduced, but no effect was observed on the paternal imprint. The effect was restricted to maintenance of the imprint and was specific for the <it>Dp(1;f)LJ9 </it>mini-X chromosome.</p> <p>Conclusions</p> <p>CTCF in <it>Drosophila </it>functions in maintaining parent-specific expression from an imprinted domain as it does in mammals. We propose that <it>Drosophila </it>CTCF maintains an insulator boundary on the maternal X chromosome, shielding genes from the imprint-induced silencing that occurs on the paternally inherited X chromosome.</p> <p>See commentary: <url>http://www.biomedcentral.com/1741-7007/8/104</url></p

    An Integrative Genomic and Epigenomic Approach for the Study of Transcriptional Regulation

    Get PDF
    The molecular heterogeneity of acute leukemias and other tumors constitutes a major obstacle towards understanding disease pathogenesis and developing new targeted-therapies. Aberrant gene regulation is a hallmark of cancer and plays a central role in determining tumor phenotype. We predicted that integration of different genome-wide epigenetic regulatory marks along with gene expression levels would provide greater power in capturing biological differences between leukemia subtypes. Gene expression, cytosine methylation and histone H3 lysine 9 (H3K9) acetylation were measured using high-density oligonucleotide microarrays in primary human acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL) specimens. We found that DNA methylation and H3K9 acetylation distinguished these leukemias of distinct cell lineage, as expected, but that an integrative analysis combining the information from each platform revealed hundreds of additional differentially expressed genes that were missed by gene expression arrays alone. This integrated analysis also enhanced the detection and statistical significance of biological pathways dysregulated in AML and ALL. Integrative epigenomic studies are thus feasible using clinical samples and provide superior detection of aberrant transcriptional programming than single-platform microarray studies
    • …
    corecore