56 research outputs found

    The novel MAPT mutation K298E:mechanisms of mutant tau toxicity, brain pathology and tau expression in induced fibroblast-derived neurons

    Get PDF
    Frontotemporal lobar degeneration (FTLD) consists of a group of neurodegenerative diseases characterized by behavioural and executive impairment, language disorders and motor dysfunction. About 20-30 % of cases are inherited in a dominant manner. Mutations in the microtubule-associated protein tau gene (MAPT) cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17T). Here we report a novel MAPT mutation (K298E) in exon 10 in a patient with FTDP-17T. Neuropathological studies of post-mortem brain showed widespread neuronal loss and gliosis and abundant deposition of hyperphosphorylated tau in neurons and glia. Molecular studies demonstrated that the K298E mutation affects both protein function and alternative mRNA splicing. Fibroblasts from a skin biopsy of the proband taken at post-mortem were directly induced into neurons (iNs) and expressed both 3-repeat and 4-repeat tau isoforms. As well as contributing new knowledge on MAPT mutations in FTDP-17T, this is the first example of the successful generation of iNs from skin cells retrieved post-mortem

    The fluorescent pentameric oligothiophene pFTAA identifies filamentous tau in live neurons cultured from adult P301S tau mice.

    Get PDF
    Identification of fluorescent dyes that label the filamentous protein aggregates characteristic of neurodegenerative disease, such as β-amyloid and tau in Alzheimer's disease, in a live cell culture system has previously been a major hurdle. Here we show that pentameric formyl thiophene acetic acid (pFTAA) fulfills this function in living neurons cultured from adult P301S tau transgenic mice. Injection of pFTAA into 5-month-old P301S tau mice detected cortical and DRG neurons immunoreactive for AT100, an antibody that identifies solely filamentous tau, or MC1, an antibody that identifies a conformational change in tau that is commensurate with neurofibrillary tangle formation in Alzheimer's disease brains. In fixed cultures of dorsal root ganglion (DRG) neurons, pFTAA binding, which also identified AT100 or MC1+ve neurons, followed a single, saturable binding curve with a half saturation constant of 0.14 μM, the first reported measurement of a binding affinity of a beta-sheet reactive dye to primary neurons harboring filamentous tau. Treatment with formic acid, which solubilizes filamentous tau, extracted pFTAA, and prevented the re-binding of pFTAA and MC1 without perturbing expression of soluble tau, detected using an anti-human tau (HT7) antibody. In live cultures, pFTAA only identified DRG neurons that, after fixation, were AT100/MC1+ve, confirming that these forms of tau pre-exist in live neurons. The utility of pFTAA to discriminate between living neurons containing filamentous tau from other neurons is demonstrated by showing that more pFTAA+ve neurons die than pFTAA-ve neurons over 25 days. Since pFTAA identifies fibrillar tau and other misfolded proteins in living neurons in culture and in animal models of several neurodegenerative diseases, as well as in human brains, it will have considerable application in sorting out disease mechanisms and in identifying disease-modifying drugs that will ultimately help establish the mechanisms of neurodegeneration in human neurodegenerative diseases.This work was funded by grant number NC/L000741/1 from the National Council of the 3Rs (NC3Rs) and Alzheimer's Research UK (ARUK). KPR Nilsson is funded by an ERC Starting Independent Researcher Grant (Project: MUMID, number 260604).This is the final published version of the article. It was originally published in Frontiers in Neuroscience (Brelstaff J, Ossola B, Neher JJ, Klingstedt T, Nilsson KPR, Goedert M, Spillantini MG, Tolkovsky AM, Frontiers in Neuroscience, 2015, 9:184, doi:10.3389/fnins.2015.00184). The final version is available at http://dx.doi.org/10.3389/fnins.2015.0018

    Human Stem Cell-Derived Neurons: A System to Study Human Tau Function and Dysfunction

    Get PDF
    Background: Intracellular filamentous deposits containing microtubule-associated protein tau constitute a defining characteristic of many neurodegenerative disorders. Current experimental models to study tau pathology in vitro do not usually recapitulate the tau expression pattern characteristic of adult human brain. In this study, we have investigated whether human embryonic stem cell-derived neurons could be a good model to study human tau distribution, function and dysfunction. Methodology/Principal Findings: Using RT-PCR, immunohistochemistry, western blotting and cell transfections we have investigated whether all 6 adult human brain tau isoforms are expressed in neurons derived from human embryonic and fetal stem cells and whether 4 repeat tau over-expression alone, or with the F3 tau repeat fragment, (amino acid 258–380 of the 2N4R tau isoform with the DK280 mutation) affects tau distribution. We found that the shortest 3 repeat tau isoform, similarly to human brain, is the first to be expressed during neuronal differentiation while the other 5 tau isoforms are expressed later. Over expression of tau with 4 repeats affects tau cellular distribution and the short tau F3 fragment appears to increase tau phosphorylation but this effect does not appear to be toxic for the cell. Conclusions: Our results indicate that human embryonic stem cell-derived neurons express all 6 tau isoforms and are

    Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology.

    Get PDF
    Alzheimer's disease is the most prevalent tauopathy and cause of dementia. We investigate the hypothesis that reactivation of plasticity can restore function in the presence of neuronal damage resulting from tauopathy. We investigated two models with tau hyperphosphorylation, aggregation and neurodegeneration: a transgenic mouse model in which the mutant P301S tau is expressed in neurons (Tg P301S), and a model in which an adeno-associated virus expressing P301S tau (AAV-P301S) was injected in the perirhinal cortex, a region critical for object recognition (OR) memory. Both models show profound loss of OR memory despite only 15% neuronal loss in the Tg P301S and 26% in AAV-P301S-injected mice. Recordings from perirhinal cortex slices of 3month-old P301S transgenic mice showed a diminution in synaptic transmission following temporal stimulation. Chondroitinase ABC (ChABC) can reactivate plasticity and affect memory through actions on perineuronal nets. ChABC was injected into the perirhinal cortex and animals were tested for OR memory 1week later, demonstrating restoration of OR memory to normal levels. Synaptic transmission indicated by fEPSP amplitude was restored to control levels following ChABC treatment. ChABC did not affect the progression of neurodegenerative tauopathy. These findings suggest that increasing plasticity by manipulation of perineuronal nets offers a novel therapeutic approach to the treatment of memory loss in neurodegenerative disorders.This work was supported by the European Union Framework 7 Project Plasticise (S.Y., M.C., M.G.S., J.W.F., P.R., P.A., B.L.S.), the Wellcome Trust (L.M.S., T.J.B.), the Alzheimer's Research UK (M.G.S.), and the UK Medical Research Council (L.M.S., T.J.B.). J.W.F.'s work is supported by the ERC-ECMneuro, the Christopher and Dana Reeve Foundation and the NIHR Cambridge biomedical research center.This article was originally published in Experimental Neurology (S Yang, M Cacqueve, LM Saksida, TJ Bussey, BL Schneider, P Aebischer, R Melani, T Pizzorusso, JW Fawcett, MG Spillantini, Experimental Neurology 2015, 265, 48-58

    Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration

    Get PDF
    Chondroitin sulfate proteoglycans (CSPGs) are the main active component of perineuronal nets (PNNs). Digestion of the glycosaminoglycan chains of CSPGs with chondroitinase ABC or transgenic attenuation of PNNs leads to prolongation of object recognition memory and activation of various forms of plasticity in the adult central nervous system. The inhibitory properties of the CSPGs depend on the pattern of sulfation of their glycosaminoglycans, with chondroitin 4-sulfate (C4S) being the most inhibitory form. In this study, we tested a number of candidates for functional blocking of C4S, leading to selection of an antibody, Cat316, which specifically recognizes C4S and blocks its inhibitory effects on axon growth. It also partly blocks binding of semaphorin 3A to PNNs and attenuates PNN formation. We asked whether injection of Cat316 into the perirhinal cortex would have the same effects on memory as chondroitinase ABC treatment. We found that masking C4S with the Cat316 antibody extended long-term object recognition memory in normal wild-type mice to 24 hours, similarly to chondroitinase or transgenic PNN attenuation. We then tested Cat316 for restoration of memory in a neurodegeneration model. Mice expressing tau with the P301S mutation showed profound loss of object recognition memory at 4 months of age. Injection of Cat316 into the perirhinal cortex normalized object recognition at 3 hours in P301S mice. These data indicate that Cat316 binding to C4S in the extracellular matrix can restore plasticity and memory in the same way as chondroitinase ABC digestion. Our results suggest that antibodies to C4S could be a useful therapeutic to restore memory function in neurodegenerative disorders.This work was supported by the ERC advanced grant ECM Neuro (294502), by a fellowship to SY from Alzheimer's Research UK (ARUK-RF2016A-1), and by the NIHR Cambridge Biomedical Research Centre

    Tau-Driven Neuronal and Neurotrophic Dysfunction in a Mouse Model of Early Tauopathy.

    Get PDF
    Tauopathies are neurodegenerative diseases characterized by intraneuronal inclusions of hyperphosphorylated tau protein and abnormal expression of brain-derived neurotrophic factor (BDNF), a key modulator of neuronal survival and function. The severity of both these pathological hallmarks correlate with the degree of cognitive impairment in patients. However, how tau pathology specifically modifies BDNF signaling and affects neuronal function during early prodromal stages of tauopathy remains unclear. Here, we report that the mild tauopathy developing in retinal ganglion cells (RGCs) of the P301S tau transgenic (P301S) mouse induces functional retinal changes by disrupting BDNF signaling via the TrkB receptor. In adult P301S mice, the physiological visual response of RGCs to pattern light stimuli and retinal acuity decline significantly. As a consequence, the activity-dependent secretion of BDNF in the vitreous is impaired in P301S mice. Further, in P301S retinas, TrkB receptors are selectively upregulated, but uncoupled from downstream extracellular signal-regulated kinase (ERK) 1/2 signaling. We also show that the impairment of TrkB signaling is triggered by tau pathology and mediates the tau-induced dysfunction of visual response. Overall our results identify a neurotrophin-mediated mechanism by which tau induces neuronal dysfunction during prodromal stages of tauopathy and define tau-driven pathophysiological changes of potential value to support early diagnosis and informed therapeutic decisions. SIGNIFICANCE STATEMENT: This work highlights the potential molecular mechanisms by which initial tauopathy induces neuronal dysfunction. Combining clinically used electrophysiological techniques (i.e., electroretinography) and molecular analyses, this work shows that in a relevant model of early tauopathy, the retina of the P301S mutant human tau transgenic mouse, mild tau pathology results in functional changes of neuronal activity, likely due to selective impairment of brain-derived neurotrophic factor signaling via its receptor, TrkB. These findings may have important translational implications for early diagnosis in a subset of Alzheimer's disease patients with early visual symptoms and emphasize the need to clarify the pathophysiological changes associated with distinct tauopathy stages to support informed therapeutic decisions and guide drug discovery.journal articleresearch support, non-u.s. gov't2016 Feb 17importe

    Atypical, non-standard functions of the microtubule associated Tau protein.

    Get PDF
    Since the discovery of the microtubule-associated protein Tau (MAPT) over 40 years ago, most studies have focused on Tau's role in microtubule stability and regulation, as well as on the neuropathological consequences of Tau hyperphosphorylation and aggregation in Alzheimer's disease (AD) brains. In recent years, however, research efforts identified new interaction partners and different sub-cellular localizations for Tau suggesting additional roles beyond its standard function as microtubule regulating protein. Moreover, despite the increasing research focus on AD over the last decades, Tau was only recently considered as a promising therapeutic target for the treatment and prevention of AD as well as for neurological pathologies beyond AD e.g. epilepsy, excitotoxicity, and environmental stress. This review will focus on atypical, non-standard roles of Tau on neuronal function and dysfunction in AD and other neurological pathologies providing novel insights about neuroplastic and neuropathological implications of Tau in both the central and the peripheral nervous system

    Dimebon Does Not Ameliorate Pathological Changes Caused by Expression of Truncated (1–120) Human Alpha-Synuclein in Dopaminergic Neurons of Transgenic Mice

    Get PDF
    Background: Recent clinical studies have demonstrated that dimebon, a drug originally designed and used as a non-selective antihistamine, ameliorates symptoms and delays progress of mild to moderate forms of Alzheimer’s and Huntington’s diseases. Although the mechanism of dimebon action on pathological processes in degenerating brain is elusive, results of studies carried out in cell cultures and animal models suggested that this drug might affect the process of pathological accumulation and aggregation of various proteins involved in the pathogenesis of proteinopathies. However, the effect of this drug on the pathology caused by overexpression and aggregation of alpha-synuclein, including Parkinson’s disease (PD), has not been assessed. Objective: To test if dimebon affected alpha-synuclein-induced pathology using a transgenic animal model. Methods: We studied the effects of chronic dimebon treatment on transgenic mice expressing the C-terminally truncated (1–120) form of human alpha-synuclein in dopaminergic neurons, a mouse model that recapitulates several biochemical, histopathological and behavioral characteristics of the early stage of PD. Results: Dimebon did not improve balance and coordination of aging transgenic animals or increase the level of striatal dopamine, nor did it prevent accumulation of alpha-synuclein in cell bodies of dopaminergic neurons. Conclusion: Our observations suggest that in the studied model of alpha-synucleinopathy dimebon has very limited effect on certain pathological alterations typical of PD and related diseases
    corecore