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Abstract: Since the discovery of the microtubule-associated protein Tau (MAPT) over 40 years ago, most studies have
focused on Tau’s role in microtubule stability and regulation, as well as on the neuropathological consequences of Tau
hyperphosphorylation and aggregation in Alzheimer’s disease (AD) brains. In recent years, however, research efforts
identified new interaction partners and different sub-cellular localizations for Tau suggesting additional roles beyond its
standard function as microtubule regulating protein. Moreover, despite the increasing research focus on AD over the
last decades, Tau was only recently considered as a promising therapeutic target for the treatment and prevention of
AD as well as for neurological pathologies beyond AD e.g. epilepsy, excitotoxicity, and environmental stress. This
review will focus on atypical, non-standard roles of Tau on neuronal function and dysfunction in AD and other
neurological pathologies providing novel insights about neuroplastic and neuropathological implications of Tau in
both the central and the peripheral nervous system.
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Introduction
Considering the increasing interest of diverse research
fields on the role of Tau in brain function and pathology
in and beyond Alzheimer’s disease (AD) and the recent
focus on Tau-based therapeutic strategies, the 1st Euro-
Tau Meeting was organized in Lille, France on April 27
and 28 April 2017. The meeting attracted many clinical
and basic Tau researchers throughout Europe providing
a unique forum to discuss and exchange ideas and hy-
potheses. The meeting facilitated the integration of the
diverse findings implicating Tau in neuronal physiology
and pathology. During the conference, a round table dis-
cussion was held to discuss the emerging various atyp-
ical, non-standard functions of Tau protein in the sense
of divergence from its cytoskeletal association and be-
yond AD as it is summarized in this review report.
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Atypical/non-standard functions of Tau
Tau protein and brain pathology – From past to present
Tau protein was discovered in 1975 [1] and its original name
was given by Marc Kirschner as a “factor” that was “associ-
ated” with tubulin promoting its self-assembly into microtu-
bules (MTs). Indeed, Tau was one of the first microtubule-
associated proteins (MAPs) to be characterized. Its discovery
[2–7] was followed by the characterization of Tau as an
axonal protein in neurons [7, 8]. In living cells, the bulk of
Tau protein is attached to microtubules and stabilizes them;
hence its role in the microtubule-based cytoskeleton was ac-
cepted as the standard Tau function (see also Fig. 1). Note
that a non-standard role for Tau in relation to RNA, DNA,
or actin binding was suggested almost four decades ago
[9–11] (for review see [12, 13]), but did not maintain
its impetus [14].
A major new line of Tau research was established after

the discovery that Tau is a major component of abnor-
mal protein deposits in the brains of patients suffering
from AD, a neurodegenerative disorder presenting brain
atrophy and memory loss. Indeed, Tau was the first pro-
tein to be identified as the main component of neurofib-
rillary tangles (NFTs), one of the main histopathological
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hallmarks of AD [15–19]. In the early 1980’s, amyloid
beta (Aβ) was also found to be deposited in extracellular
amyloid plaques [20] based on results obtained with
Down syndrome brains [21] and these amyloid plaques
accepted as the second histopathological characteristic
of AD brains. During the 80’s, different pathological Tau
modifications such as aberrant hyperphosphorylation,
conformation, ubiquitylation, acetylation, truncation and
aggregation and others, were also identified in AD brains
and other neurodegenerative disorders [18, 22–26], now
collectively called Tauopathies. The term Tauopathy was
used for the first time to define the family with the +3
MAPT mutation [27] (see also the article “What is the
evidence that the spread of tau pathology occurs via a
prion-like mechanism?” in this issue). In addition, in-
creasing research efforts have been focused on elucidat-
ing the physiological versus pathological properties of
Tau, investigating mechanisms of neuronal dysfunction
and pathology attributed to loss-of-normal function or
gain-of-toxic Tau properties in AD and other neuronal
pathologies with diverse etiologies e.g. epilepsy, excito-
toxicity, and environmental stress [28–30].

Transcriptomic and proteomic profile of tau – What do
we miss?
Tau protein in humans is encoded by the MAPT gene,
which is located on chromosome 17q21 and comprises
16 exons, where exons 1(E1), E4, E5, E7, E9, E11, E12
and E13 are constitutive, and the others are subjected to
alternative splicing. E0 and E1 encode for 5′ untranslated
MAPT mRNA sequences, where E0 as part of the pro-
moter, is transcribed but not translated [31, 32]. Alter-
native mRNA splicing of exons E2, E3 and E10,
generates 6 isoforms in the adult human brain. These
isoforms differ with regard to the number of 29
residue-long near-amino-terminal inserts, encoded by
E2 and E3. Isoforms containing 0, 1 or 2 inserts are
known as 0 N, 1 N or 2 N, respectively. Isoforms can
also be categorized depending on whether they contain
3 or 4 near carboxyl-terminal repeats (3R and 4R, re-
spectively). The second repeat (R2) is encoded by the
alternatively spliced E10, whose inclusion yields the 4R
isoform, but it is excluded in mRNA encoding, 3R–Tau
[33, 34].
Expression of the six Tau isoforms is developmentally

regulated [35], with the smallest and most highly phos-
phorylated 0N3R (352 a.a) being most abundant in fetal
(human or rodent) brains. The Tau expression pattern is
modified post-developmentally with a reduction in 0N3R
levels and the presence of all six Tau isoforms in the
adult human with the levels of 3R and 4R isoforms
roughly equal and underrepresentation of the 2 N species
[35]. In contrast, there are mainly 4R isoforms in the adult
rodent brain [36, 37]. It is unclear at the moment whether
such apparent differential regulation of isoform expression
of their respective Tau ortholog occurs in invertebrates
such as Drosophila or non-mammalian vertebrates [38].
The role of the axon initial segment in the axodendritic
sorting of different Tau isoforms has been recently re-
ported in rat cortical neurons [39]. However, these ob-
servations raise mostly unanswered questions on
whether atypical Tau functions involve particular iso-
forms exclusively or preferentially. Moreover, the po-
tentially differential distribution of Tau isoforms in the
brain and/or their intraneuronal-specific localization
remains mostly unanswered.
The round table discussion explored the evidence

ascribing atypical Tau functions and debated whether es-
tablishment and understanding of these functions would
be better unraveled by thorough identification of the
intracellular and brain region-specific localization of the
different isoforms, or whether its localization alone, dis-
regarding the isoform complexity, can yield expedient
understanding of its function(s) in the different locations.
The complex nature of the isoform-specific approach in
relation to the mouse, rat, human and fruit fly brain was
debated. Evidence arguing that a fruitful approach does
not necessitate knowledge of isoform-specific subcellular
localization was presented from Amrit Mudher suggesting
that human Tau isoforms in the Drosophila model present
differential phenotypes consistent with unique isoform-
specific pathophysiological functions [40]. Consistent with
this view, recently published work by Bart Dermaut de-
scribed a pathological role for the 4R, but not the 3R, Tau
during Drosophila development [41], a further demon-
stration of the utility of this model in addressing such
questions in vivo.
A significant point raised in the discussion was the ap-

parent lack of a map detailing Tau isoform-specific or
differential localization in a vertebrate brain. However,
some published evidence and unpublished work from
Maria Spillantini’s lab indicates Tau isoform-specific dis-
tribution in the brain, in support of previous studies sug-
gesting considerable regional variation in Tau expression
[34]. Hence, Tau mRNA and protein levels in the neo-
cortex are 2~fold higher than those in the white matter
and cerebellum [42]. Moreover, splicing of the MAPT
primary transcript also presents regional differences. For
example, 0N3R Tau is lower in the adult cerebellum
than in other regions [42, 43]. Recent findings from Jür-
gen Götz’s Lab demonstrated that the 1 N tau isoform is
highly expressed in the murine pituitary gland, com-
pared to the cortex or hippocampus, but is weaker in
the olfactory bulb. The 2 N isoform is enriched in the
cerebellum but its levels are also reduced in the olfactory
bulb. In contrast, the 0 N isoform presents the highest
expression in the olfactory bulb followed by the cortex
[44]. These variations may contribute to the well-known
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differential vulnerability of the distinct brain regions to
Tau pathology, while specific disturbances of the nor-
mally 1:1 4R/3R ratio are associated with distinct Tauo-
pathies [45, 46]. The regions in which 3R is more
abundant could also be associated with higher prolifera-
tion or stem cell presence such as the dentate gyrus and
olfactory bulb [47].
In terms of intracellular localization, based on im-

munocytochemical staining, Tau is mainly found in the
axons of mature neurons (see Fig. 1). However, it is ubi-
quitous in immature neurons distributing apparently
equally in the cell body and neurites, but becomes pri-
marily axonal during neuronal maturation and emer-
gence of neuronal polarization. This intracellular sorting
of Tau is accompanied by a shift towards the higher-
molecular-weight 4R isoforms and reduced phosphoryl-
ation [4, 48–50]. Furthermore, the axonal presence of
Tau differs between the ends of the axon, as it is mostly
associated with MTs at the distal end of the axon close
to the growth cone [51, 52] (see Fig. 1). However, Tau
intraneuronal distribution in the human brain is still
under debate as nearly equal amounts of Tau were de-
scribed in the human cerebral gray (somatodendrites) as
the underlying white matter (axons) using biochemical
assays [53].
Tau phosphorylation is suggested to be involved in this

intra-axonal sorting since it was also found to vary along
the length of the growing axon. A phosphorylation gradi-
ent is evident, with a gradual change from phosphorylated
to dephosphorylated Tau going from the soma towards
the growth cone [54]. As MTs are more dynamic in the
distal regions of growing axons, and dephosphorylation at
certain sites increases its affinity towards MTs, these find-
ings suggest that Tau in the growing axon has additional
functions to increasing MTs stability. Indeed, a novel func-
tion for Tau as a regulator of End Binding proteins 1 and
3 (EB1/3) in extending neurites and axons of developing
neurons was presented and discussed by C.L. Sayas [55].
EBs are the core plus-end tracking proteins (+TIPs),
which accumulate at the growing ends of MTs, regulating
their dynamic state. The current evidence suggests that
the interaction between Tau and EBs is direct and
dependent on Tau phosphorylation [56] and is dramat-
ically increased by NAP, a neuroprotective peptide, de-
rived from activity-dependent neuroprotective protein
[57]. These recent findings offer new insights on the
interaction of Tau with other cytoskeletal proteins (e.g.
EBs) in mature neurons while future studies should fur-
ther monitor the role of Tau-EB interaction under
pathological conditions e.g. Alzheimer’s disease and
other Tauopathies [58].
Multiple studies have provided evidence of low levels

of Tau localizing in different intracellular compartments
such as the nucleus, nucleolus, plasma membrane,
dendrites and dendritic spines (see Fig. 1), as well as in
association with various cellular organelles such as the
ribosomes, endoplasmic reticulum and the Golgi appar-
atus [13]. The mechanisms driving this apparent intra-
neuronal Tau sorting are still not well understood, but
evidence suggests that it could occur both at the mRNA
or protein level. One of the suggested mechanisms for
Tau sorting is based on selective Tau transport into
axons or selective degradation in dendrites [59]. An al-
ternative hypothesis suggests that somehow Tau pos-
sesses a higher affinity for axons than dendrites [59],
consistent with its observed elevation in the axonal
compartment. In line with this notion, evidence from Li
and colleagues indicated that the axon initial segment
(AIS) operates as a barrier against retrograde diffusion
of Tau into the dendrites and that Tau phosphorylation
and its interaction with MTs is essential for this barrier
to be maintained [60]. It has been reported that Tau
acetylation destabilizes the AIS cytoskeleton and pro-
mote the somatodendritic mislocalization of Tau [61].
Furthermore, the projection domain of Tau interacts

with membrane complexes and cytoplasmatic compo-
nents [62], suggesting that it is a differential property of
the higher molecular weight isoforms (1 N and 2 N) that
possess these domains. It is proposed that Tau inter-
action with annexin A2, through domains outside those
binding MTs [63], contributes to its axon specific distri-
bution and this interaction is modulated by phosphoryl-
ation [64], Indeed, Tau mutations leading to aberrant
interaction with annexin A2 are likely responsible for
the redistribution of Tau away from the axons to the
somatodendritic compartment [63].
Interestingly, the intracellular sorting of Tau in differ-

ent compartments seems to be isoform-dependent [44].
For instance, it has been reported that 1 N isoforms are
localized mainly to the nucleus, 0 N isoforms primarily
to the cell bodies and axons whereas the 2 N isoforms
are elevated in axons and cell bodies [44]. Indeed, Marie
Galas and colleagues have recently shown that overex-
pression of the 0N4R Tau isoform in Tau-knock out
(Tau-KO) mouse neurons led to its cytoplasmic
localization. Moreover, this Tau isoform goes mostly to
the nucleus when tagged with a Nuclear Localization
Signal (NLS) [65]. However, such compartment-specific
Tau isoform mapping has not been performed in the hu-
man brain.
The complexity of using the isoform-specific approach

to define other Tau functions was also pointed out, fur-
ther elaborated because of the existence of Tau species
in addition to the six main isoforms [66, 67]. In fact, al-
ternative splicing could yield up to 30 different potential
Tau isoforms [32, 66]. In addition, Tau can also be local-
ized in peripheral nervous system (PNS) neurons which
express a district high molecular weight (HMW) Tau



Fig. 1 A schematic representation of the suggested role(s) of Tau in different subcellular compartments such as neuronal axon, nucleus,
post- and pre-synaptic compartments
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species [68–70]- see also below. This is further compli-
cated by the fact that different Tau transcripts have been
described in the literature, including a 2 kb transcript in
human cells, that utilize alternate polyadenylation sites
on the Tau pre-mRNA, albeit of unknown significance.
The 2 kb transcript was found to code for a major nu-
clear species of Tau [71] and has also been reported in
the human frontal cortex by Michel Goedert [19] and in
testicular spermatid manchette [72]. The presence of
Tau in the sperm and testis has also been reported inde-
pendently [73, 74]. It is not clear whether the isoform-
specific distribution of Tau to either the nucleus, soma
and axons reported in the murine brain [44] is dictated
by different transcripts (2 kb and 6 kb), or whether
analogous transcripts exist in other species e.g. fruit fly.
Therefore, unraveling this complexity would provide a
better understanding of the isoform-specific localization
and function of Tau from the transcript to protein level.
In support of several articles describing a nuclear role

for Tau in RNA and DNA protection [50, 75, 76], recent
findings from Marie Galas and Eliette Bonnefoy’s teams
suggest a structural role in pericentromeric heterochro-
matin (PCH) architecture, which is impaired in AD
brains and a regulatory function for Tau in the expres-
sion of PCH lncRNA [65]. Recently, a novel role of Tau
in ribosomal DNA transcription and stability has been
reported in cells from Bloom’s syndrome patients [77].
Consistent with these findings, data presented by the
Serpell Lab provided evidence for a role of Tau in nucle-
olar transcriptional regulation. Furthermore, extending
previous work [78], Alberto Rabano described Tau Nu-
clear Indentations (TNI) in the entorhinal cortex of early
AD patients, which are immune-reactive only to non-
phosphorylated Tau epitopes, a potential early marker,
and mechanism for the disease. These TNIs may lead to
loss of nuclear integrity similar to the effects of lamin in-
vaginations that were reported in the AD brain by the
Feany lab [79]. Moreover, the work presented by Bart
Dermaut indicated that human Tau expression in Dros-
ophila led to mitotic defects and aneuploidy, similar to
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the accumulation of aneuploidy observed in splenocytes
of Tau-KO mice [80]. This suggests yet another role for
Tau in chromosome stability, in agreement with previ-
ous studies utilizing peripheral cells from Tauopathy
patients [81].
Collectively, the differential distribution of Tau and its

isoforms in various cell compartments may reflect distinct
subcellularly compartmentalized roles; if so, then distur-
bances in this Tau sorting and compartmentalization
could trigger neuronal dysfunction and neurodegeneration
as discussed below. As suggested by different round table
participants, future studies should explicitly state the Tau
isoform employed in their models, as well as monitor its
sub-cellular localization, such that findings can be inter-
preted taking into consideration that they may not pertain
to all Tau isoforms.

Tau splicing and isoform expression in neuronal function
and malfunction
Splicing of the MAPT primary transcripts is tightly regu-
lated by several different mechanisms, while its dysregu-
lation and the resulting imbalance of 4R/3R Tau protein
and transcripts is causally related to Tau pathology (for
review see [24, 82]). The RNA-binding protein Fused in
Sarcoma (FUS) may promote skipping of E3 and E10, as
FUS knockdown has been reported to increase the ex-
pression of 2 N and 4R Tau isoforms [83]. Recently,
knockdown of FUS and of Splicing Factor, Proline and
Glutamine-rich (SFPQ) was shown to affect E10-related
splicing leading to increased 4R/3R ratio, hyperpho-
sphorylation, and neurodegeneration [84]. Small non-
coding RNAs (miRNAs) can also influence Tau splicing.
For example, miR-132 reduces 4R expression in mouse
neuroblastoma cells [85], and miR219 represses Tau pro-
tein synthesis by binding to the 3′ untranslated region of
the mRNA [86, 87]. Another mechanism that could be
linked to the regulation of Tau isoform expression is the
formation of ribonucleoprotein granules that results in a
shift towards the expression of larger Tau isoforms (see
below).
New evidence supports a bi-directional interaction be-

tween Tau and the cellular transcriptome. For example,
Tau itself can bind to tRNA, a property that may favor
Tau fibril formation [88, 89]. Consistent with its role in
regulating the cellular transcriptome, unpublished work
from Bruno Lefebvre in Luc Buée’s lab provided evi-
dence for an interaction of Tau with the DEAD-box
RNA helicase DDX5, supporting a novel role in RNA me-
tabolism and surveillance. Moreover, accumulating evi-
dence from various labs supports a profoundly important
role for RNA binding proteins (RBPs) in Tau biology. All
RNA is trafficked throughout the neuron in granules
composed of RBPs and mRNA. These RBPs appear to
spontaneously coalescence into a state resembling lipid
droplets or vesicles [90] allowing the RBP/RNA com-
plexes to form granules, which could be considered
membraneless organelles. The Tau mRNA-binding pro-
teins RAS GTPase-activating protein-binding protein 1
(G3BP1) and the minor histocompatibility antigen H13
or IMP1 for example, promote the formation of such
granules. This leads to a shift towards the production
of larger Tau isoforms and therefore, controls axonal
sprouting [91] among other functional changes.
Accordingly, a recent study by Akihiko Takashima’s

team demonstrated co-localization of Tau mRNA with two
RNA binding proteins (RBPs), Stau1 and FMRP, which
function as transport proteins. Interestingly, glutamate-
driven neuronal activity stimulates local translation of Tau
mRNA within mRNP granules in the somatodendritic
compartment where the protein accumulates and be-
comes hyperphosphorylated [92]. Furthermore, another
type of RBP/RNA complexes, the Stress Granules (SGs),
was recently shown to contribute to Tau pathology and
neurodegeneration. SGs normally sequester non-essential
mRNA during stressful conditions, allowing the cell to
direct protein synthesis towards cytoprotective proteins
[93, 94]. However, persistent SG formation seems to be
pathological as it directly stimulates Tau aggregation as
shown by different studies from the Benjamin Wolozin’s
lab [93, 95]. Moreover, Tau was also shown to stimulate
the formation of SGs indicating that its interaction with
the mRNA trafficking machinery maybe bi-directional
[95]. On the other hand, alteration of cytoplasmic eIF2α
and reduced SGs formation has been recently reported in
the THY-Tau22 tauopathy mouse model under acute
hyperthermic stress, raising further questions about the
interplay of Tau protein and the cellular transcriptome
under physiological and pathological conditions [96].

Novel aspects of physiological functions of tau
Tau hyperphosphorylation and aggregation are well-
established key events in AD neuropathology [22]. Al-
though the impact of these disease-associated changes
on Tau’s microtubule binding function has been reported
[97–101], its effect(s) on atypical Tau functions are not
yet known. Thus, the overall contribution of such
disease-associated changes to the potential loss or alter-
ation of novel Tau function(s) and AD pathology is still
unclear.
Recent experimental evidence from different teams

suggests that Tau loss impacts on neuronal function in
the CNS and PNS impinging upon different behavioral
domains. While deletion of Tau does not precipitate
gross behavioral or neurostructural alterations in young/
adult mice [28, 102–104], previous work has shown that
loss of Tau impacts on mechanisms of synaptic plasti-
city, as Tau-KO animals exhibit deficits in hippocampal
LTD [105] and LTP [106]. Moreover, these synaptic
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changes may be aggravated by aging, as 20-month-old
Tau-KO animals also exhibit reduced excitatory synaptic
markers and reduced active forms of other MAPs, im-
plicating the cumulative loss of functional MAPs and
acetylated tubulin in synaptic deficits and cognitive im-
pairment triggered by aging and loss of Tau [102].
Another age-related phenotype that has been described

recently is related to a novel role of Tau in regulated brain
insulin signaling [107]. This recent study by David Blum
and Luc Buée showed that Tau deletion leads to an
impaired hippocampal response to insulin. This could
explain the spatial memory deficit upon Tau deletion and
peripheral glucose metabolism impairments associated
with hypothalamic insulin resistance. In line with this
animal evidence, human genetic analyses link the Tau
haplotype to glucose homeostasis. The regulatory role of
Tau in insulin signaling involves two different nodes. First,
Tau-KO mice exhibit higher phosphorylation of IRS-1 at
the inhibitory S636 site, known to be linked to insulin
resistance in the AD and Tauopathy brain [108, 109], and
possibly involve downstream kinase activation. Second,
Marininak’s study demonstrates that Tau levels tend to
reduce the ability of PTEN lipidphosphatase to dephos-
phorylate PIP3 into PIP2, an important step in down-
stream insulin signaling. These findings raise the
hypothesis that pathophysiological Tau loss-of-function
favors brain insulin resistance, which is likely instru-
mental for the cognitive and metabolic impairments de-
scribed in AD patients [107].
Furthermore, Tau involvement in myelination through

its interaction with the kinase Fyn and MTs has been
also described [110–112]. Accordingly, ultrastructural
and biochemical analysis of Tau-KO animals demon-
strated a hypomyelination phenotype in sciatic nerves of
young and adult Tau-KO mice [113] originating in small
caliber axons that also exhibit microtubule alterations
[114] and altered pain processing [113]. Moreover, these
Tau-dependent morphofunctional effects exhibited an
age-progressive phenotype with old Tau-KO animals
presenting degenerating myelinated fibers and progres-
sive hypomyelination of large-diameter, motor-related
axons accompanied by motor deficits [115]. Other stud-
ies have also related the age-dependent motor deficits of
Tau-KO animals with an age-related loss of substantia
nigra (SN) dopaminergic neurons [116] (but also see ref.
[103]). Interestingly, similar motor deficits, such as re-
duced motor strength and coordination, were also found
in old animals lacking 4R–Tau, suggesting a potential
role for this large isoform in age-dependent development
of motor deficits [117]. Note that, although Tau is
expressed in both CNS and PNS, the isoforms expressed
in adult CNS differ from the HMW Tau isoforms (“big
Tau”) found mainly in PNS (e.g., sciatic nerves) but also
in optical nerves and retina [70, 118–120]. Expression of
HMW Tau isoforms may confer increased stabilization
and spacing of MTs [121, 122] but to date, our know-
ledge about Tau function in the PNS is very limited.

Tau protein as key regulator of brain neuroplasticity and
neuropathology
In contrast to axons, a small amount of Tau is present in
dendrites and dendritic spines under normal, physio-
logical conditions but its function therein has not been
well characterized [123, 124]. It is suggested that in this
compartment, Tau may regulate synaptic plasticity as
pharmacological synaptic activation induces transloca-
tion of endogenous Tau from the dendritic shaft to exci-
tatory post-synaptic compartments in cultured mouse
neurons and in acute hippocampal slices [125]. Through
its interaction with several cellular partners such as
tubulin, F-actin, Src family kinases, Tau may play an im-
portant role in mediating alterations in the cytoskeletal
structure of dendrites and spines as well as synaptic scaf-
fold and signaling [126]. This notion is further supported
by the fact that mechanisms of synaptic plasticity are
impaired in Tau-KO animals [105, 106] while Tau phos-
phorylation in specific epitopes is suggested to be crit-
ical for synaptic plasticity [127].
Localization of Tau at the synapse has been the focus

of several recent reports aiming to determine whether
and why Tau is located at the pre-synaptic, the postsyn-
aptic, or both compartments [124]. We now know that
Tau interacts directly with filamentous (F) actin [128],
localized both in presynaptic boutons and in the head
and neck of dendritic spines [129]. Furthermore, using
synaptosomes derived from healthy and AD brains, re-
cent studies demonstrated that Tau is present in both
pre- and post-synaptic compartments [124], although
phosphorylated Tau was found in greater amounts in the
postsynaptic sites. Furthermore, using a mouse Tauopa-
thy model expressing the FTDP-17 associated mutation
P301L, PHF–Tau was found in both pre- and post-
synaptic compartments suggesting that Tau distribution
changes in the context of disease [130].
There are several potential mechanisms by which Tau

could affect synaptic function and neuronal excitability.
It may directly influence synaptic function since, as de-
scribed above, Tau has been shown to be localized within
both pre- and post-synaptic compartments, possibly due
to its interaction with other essential synaptic proteins.
Further analysis has shown that the phosphorylation sta-
tus of Tau is modulated through NMDA receptor activa-
tion [123]. However, unphosphorylated species are also
present in this compartment, suggesting that in synapses,
Tau is likely to oscillate between phosphorylated and non-
phosphorylated states [123]. Very recently, Kobayachi and
colleagues provided evidence that physiological neuronal
activity stimulates local translation and phosphorylation of
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Tau [92]. These data strongly suggest that in dendritic
compartments, Tau is involved in physiological synaptic
function. However, dendritic localization is more exten-
sively studied in the context of AD pathology, where
phosphorylated Tau is missorted into dendrites but also
into dendritic spines, causing synaptic dysfunction by
suppressing AMPA receptor-mediated synaptic responses,
through disruption of post-synaptic targeting and anchor-
ing of glutamate receptors [131].
At the synapse, Tau has been shown to associate with

the PSD complex [132], and function in targeting Fyn, a
Tyrosine Kinase that belongs to the Src family, to post-
synaptic compartments and to be involved in coupling
NMDARs to PSD95 [110, 133, 134]. The interaction of
Tau with Fyn appears to be essential for targeting Fyn to
PSD, where it regulates NMDA receptor function
through phosphorylation [135] and the interaction of
Fyn with membrane-associated proteins of the plasma
membrane [136, 137]. The interaction with Fyn is regu-
lated by the phosphorylation status of Tau, and therefore
can be disrupted in disease, when its phosphorylation
pattern is altered [133, 136, 138] (see also Fig. 1).
Cumulative evidence from experimental studies using

genetic attenuation of Tau levels suggests that it medi-
ates, at least in part, the detrimental effects of Aβ on
neuronal function. In fact, Tau ablation has been shown
to protect against Aβ-driven AD brain pathology, neuro-
toxicity and memory impairment [139–142]. One of the
possible mechanisms through which Tau could trigger
neuronal and/or synaptic malfunction is based on its
Aβ-driven missorting at dendritic spines, a potential
early event in AD, preceding the manifestation of detect-
able neurodegeneration [131, 143]. Recent evidence
demonstrated that the intracellular distribution of Tau
depends critically on the phosphorylation status of the
protein [144]. Accordingly, hyperphosphorylation seems
to be necessary for Tau missorting at synapses as mim-
icking hyperphosphorylation by pseudophosphorylation,
mislocalizes it to dendritic spines, an effect not observed
with phosphorylation-deficient protein [131]. Import-
antly, Aβ is a well-known trigger of Tau missorting and
dendritic collapse [110, 123, 131, 145–147], leading to
increased postsynaptic targeting of Fyn [110]. Fyn select-
ively modulates the function of GluN2B-containing
NMDARs, by phosphorylation of the GluN2B on the
Y1472 epitope [110, 148]. This phosphorylation is
known to stabilize GluN2B at the postsynaptic density
linking NMDARs to downstream excitotoxic signaling
due to their overexcitation [110, 148].
Recent results from Dr. Sotiropoulos’ team extended

the contribution of Tau hyperphosphorylation and mis-
sorting to the detrimental effects of exposure to lifetime
stress. Stress-dependent Tau missorting may precipitate
the dendritic and synaptic malfunctions implicated in
the development of neuropsychiatric pathologies such as
depression, a known risk factor for AD. These studies
demonstrate that chronic stress causes dendritic atrophy,
reduced neurogenesis and synaptic deficits in hippocam-
pal integrity leading to cognitive and mood deficits in a
Tau-dependent manner [28, 104, 149, 150]. Chronic
stress triggers Tau hyperphosphorylation and synaptic
missorting of Tau, increased postsynaptic targeting of
Fyn and elevation of pGluN2B at the postsynaptic dens-
ity representing a potential mechanism of stress-driven
neurotoxicity. Importantly, all these changes could be
abrogated by the ablation of Tau in Tau-KO animals.
This, in turn, reveals the protective role of Tau reduction
against the establishment of stress-driven hippocampal
pathology. This observation is in line with other ap-
proaches using Tau-downregulation strategies to tackle
neuropathologies with diverse etiology such as AD, epi-
lepsy, Dravet syndrome, excitotoxicity, stress-driven de-
pression [29, 110, 140, 151].
Collectively, these studies highlight Tau protein as a

key regulator of neuronal plasticity and pathology in and
beyond AD. Indeed, previous studies have shown that
Tau hyperphosphorylation and neuronal/synaptic atro-
phy is also triggered by different intrinsic and extrinsic
conditions such as acute stress [152], hypothermia [153],
hypometabolism [154], and hibernation [155] in a re-
versible manner. Thus, future studies are necessary to
identify the potential threshold/“point of no return” be-
tween Tau-related neuroplasticity and neuropathology
during brain aging that may contribute to our under-
standing of the various precipitating factors of AD as
well as of a broader spectrum of brain pathologies.

Future directions
This review further emphasizes the view of Tau as a
multifunctional protein. However, it is evident that our
knowledge about its atypical/non-standard functions is
very limited and could represent only the tip of the Tau
“iceberg”. Thus, a main goal of the field is to clarify the
exact molecular mechanisms underlying the already-
described Tau functions as well as decipher novel Tau
physiological roles and their potential involvement in
neuropathology. Many participants of this round table
discussion suggested that future research efforts should
focus on the detailed monitoring of Tau interacting
partners, different subcellular locations and post-
translational modifications of Tau, as well as the potential
implication of various pools of Tau isoforms, aiming to
understand their role on Tau action(s) and its role in neur-
onal (mal)function. Another important issue will be to
define the functions of extracellular Tau (see also the art-
icle “What is the evidence that the spread of tau pathology
occurs via a prion-like mechanism?” in this issue) and their
role in the pathophysiological processes.
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Conclusions
Although Tau protein was found more than 40 years ago,
our knowledge about its role(s) in brain function/malfunc-
tion is mainly based on its involvement in AD pathology
and other Tauopathies. While we are aware that this
review may not cover the entire field (e.g. extracellular
Tau –see also above), this short report aimed to
summarize recent findings that were presented and
discussed in 1st EuroTau meeting related to novel and
atypical roles of Tau adding unique insights to our limited
knowledge on Tau-related neuronal (mal)function. In light
of the accumulating evidence supporting the potential
involvement of Tau in neuronal pathologies with diverse
etiology, the findings presented and discussed here may
trigger novel lines of research that will contribute to better
understanding of Tau biology and identify potential
therapeutic targets against brain aging and pathology.
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