1,211 research outputs found

    Behavioural Thatcherism and nostalgia: tracing the everyday consequences of holding Thatcherite values

    Get PDF
    With the passing of time and the benefit of hindsight, there is, again, growing interest in Thatcherism—above all in its substantive and enduring legacy. But, to date at least, and largely due to data limitations, little of that work has focussed on tracing the behavioural consequences, at the individual level, of holding Thatcherite values. That oversight we seek both to identify more clearly and begin to address. Deploying new survey data, we use multiple linear regression and structural equation modelling to unpack the relationship between ‘attitudinal’ and ‘behavioural’ Thatcherism. In the process, we reveal the considerably greater behavioural consequences of holding neo-liberal, as distinct from neo-conservative, values whilst identifying the key mediating role played by social, political and economic nostalgia. We find that neo-liberal values are positively associated with behavioural Thatcherism, whilst neo-conservative values are negatively associated with behavioural Thatcherism. In exploring the implications, we also reveal some intriguing interaction effects between economic nostalgia and neo-conservative values in the centre-left vote for Brexit. In the conclusion, we reflect on the implications of these findings for our understanding of the legacy of Thatcherism and, indeed, for Brexit itself

    The fundamental cycle of concept construction underlying various theoretical frameworks

    Get PDF
    In this paper, the development of mathematical concepts over time is considered. Particular reference is given to the shifting of attention from step-by-step procedures that are performed in time, to symbolism that can be manipulated as mental entities on paper and in the mind. The development is analysed using different theoretical perspectives, including the SOLO model and various theories of concept construction to reveal a fundamental cycle underlying the building of concepts that features widely in different ways of thinking that occurs throughout mathematical learning

    Scale Setting in QCD and the Momentum Flow in Feynman Diagrams

    Get PDF
    We present a formalism to evaluate QCD diagrams with a single virtual gluon using a running coupling constant at the vertices. This method, which corresponds to an all-order resummation of certain terms in a perturbative series, provides a description of the momentum flow through the gluon propagator. It can be viewed as a generalization of the scale-setting prescription of Brodsky, Lepage and Mackenzie to all orders in perturbation theory. In particular, the approach can be used to investigate why in some cases the ``typical'' momenta in a loop diagram are different from the ``natural'' scale of the process. It offers an intuitive understanding of the appearance of infrared renormalons in perturbation theory and their connection to the rate of convergence of a perturbative series. Moreover, it allows one to separate short- and long-distance contributions by introducing a hard factorization scale. Several applications to one- and two-scale problems are discussed in detail.Comment: eqs.(51) and (83) corrected, minor typographic changes mad

    Scale setting for alpha_s beyond leading order

    Full text link
    We present a general procedure for incorporating higher-order information into the scale-setting prescription of Brodsky, Lepage and Mackenzie. In particular, we show how to apply this prescription when the leading coefficient or coefficients in a series in the strong coupling alpha_s are anomalously small and the original prescription can give an unphysical scale. We give a general method for computing an optimum scale numerically, within dimensional regularization, and in cases when the coefficients of a series are known. We apply it to the heavy quark mass and energy renormalization in lattice NRQCD, and to a variety of known series. Among the latter, we find significant corrections to the scales for the ratio of e+e- to hadrons over muons, the ratio of the quark pole to MSbar mass, the semi-leptonic B-meson decay width, and the top decay width. Scales for the latter two decay widths, expressed in terms of MSbar masses, increase by factors of five and thirteen, respectively, substantially reducing the size of radiative corrections.Comment: 39 pages, 15 figures, 5 tables, LaTeX2

    Curricular orientations to real-world contexts in mathematics

    Get PDF
    A common claim about mathematics education is that it should equip students to use mathematics in the ‘real world’. In this paper, we examine how relationships between mathematics education and the real world are materialised in the curriculum across a sample of eleven jurisdictions. In particular, we address the orientation of the curriculum towards application of mathematics, the ways that real-world contexts are positioned within the curriculum content, the ways in which different groups of students are expected to engage with real-world contexts, and the extent to which high-stakes assessments include real-world problem solving. The analysis reveals variation across jurisdictions and some lack of coherence between official orientations towards use of mathematics in the real world and the ways that this is materialised in the organisation of the content for students

    Heavy quark mass determination from the quarkonium ground state energy: a pole mass approach

    Full text link
    The heavy quark pole mass in perturbation theory suffers from a renormalon caused, inherent uncertainty of O(ΛQCD)O(\Lambda_{\rm QCD}). This fundamental difficulty of determining the pole mass to an accuracy better than the inherent uncertainty can be overcome by direct resummation of the first infrared renormalon. We show how a properly defined pole mass as well as the MSˉ\bar {\rm MS} mass for the top and bottom quarks can be determined accurately from the O(mαs5)O(m\alpha_s^5) quarkonium ground state energy.Comment: 16 pages; published versio

    Two-Loop O(αsGFmt2){\cal O}(\alpha_sG_Fm_t^2) Corrections to the Fermionic Decay Rates of the Standard-Model Higgs Boson

    Full text link
    Low- and intermediate mass Higgs bosons decay preferably into fermion pairs. The one-loop electroweak corrections to the respective decay rates are dominated by a flavour-independent term of O(GFmt2){\cal O}(G_Fm_t^2). We calculate the two-loop gluon correction to this term. It turns out that this correction screens the leading high-mtm_t behaviour of the one-loop result by roughly 10\%. We also present the two-loop QCD correction to the contribution induced by a pair of fourth-generation quarks with arbitrary masses. As expected, the inclusion of the QCD correction considerably reduces the renormalization-scheme dependence of the prediction.Comment: 14 pages, latex, figures 2-5 appended, DESY 94-08

    The influences of stomatal size and density on rice abiotic stress resilience

    Get PDF
    A warming climate coupled with reductions in water availability and rising salinity are increasingly affecting rice (Oryza sativa) yields. Elevated temperatures combined with vapour pressure deficit (VPD) rises are causing stomatal closure, further reducing plant productivity and cooling. It is unclear what stomatal size (SS) and stomatal density (SD) will best suit all these environmental extremes. To understand how stomatal differences contribute to rice abiotic stress resilience, we screened the stomatal characteristics of 72 traditionally bred varieties. We found significant variation in SS, SD and calculated anatomical maximal stomatal conductance (gsmax ) but did not identify any varieties with SD and gsmax as low as transgenic OsEPF1oe plants. Traditionally bred varieties with high SD and small SS (resulting in higher gsmax ) typically had lower biomasses, and these plants were more resilient to drought than low SD and large SS plants, which were physically larger. None of the varieties assessed were as resilient to drought or salinity as low SD OsEPF1oe transgenic plants. High SD and small SS rice displayed faster stomatal closure during increasing temperature and VPD, but photosynthesis and plant cooling were reduced. Compromises will be required when choosing rice SS and SD to tackle multiple future environmental stresses

    Computer modeling of diabetes and Its transparency: a report on the Eighth Mount Hood Challenge

    Get PDF
    Objectives The Eighth Mount Hood Challenge (held in St. Gallen, Switzerland, in September 2016) evaluated the transparency of model input documentation from two published health economics studies and developed guidelines for improving transparency in the reporting of input data underlying model-based economic analyses in diabetes. Methods Participating modeling groups were asked to reproduce the results of two published studies using the input data described in those articles. Gaps in input data were filled with assumptions reported by the modeling groups. Goodness of fit between the results reported in the target studies and the groups’ replicated outputs was evaluated using the slope of linear regression line and the coefficient of determination (R2). After a general discussion of the results, a diabetes-specific checklist for the transparency of model input was developed. Results Seven groups participated in the transparency challenge. The reporting of key model input parameters in the two studies, including the baseline characteristics of simulated patients, treatment effect and treatment intensification threshold assumptions, treatment effect evolution, prediction of complications and costs data, was inadequately transparent (and often missing altogether). Not surprisingly, goodness of fit was better for the study that reported its input data with more transparency. To improve the transparency in diabetes modeling, the Diabetes Modeling Input Checklist listing the minimal input data required for reproducibility in most diabetes modeling applications was developed. Conclusions Transparency of diabetes model inputs is important to the reproducibility and credibility of simulation results. In the Eighth Mount Hood Challenge, the Diabetes Modeling Input Checklist was developed with the goal of improving the transparency of input data reporting and reproducibility of diabetes simulation model results
    • 

    corecore