
CERN-TH.7487/94
hep-ph/9412265

Scale Setting in QCD and the

Momentum Flow in Feynman Diagrams

Matthias Neubert
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Abstract

We present a formalism to evaluate QCD diagrams with a single virtual gluon using

a running coupling constant at the vertices. This method, which corresponds to an all-

order resummation of certain terms in a perturbative series, provides a description of

the momentum 
ow through the gluon propagator. It can be viewed as a generalization

of the scale-setting prescription of Brodsky, Lepage and Mackenzie to all orders in

perturbation theory. In particular, the approach can be used to investigate why in

some cases the \typical" momenta in a loop diagram are di�erent from the \natural"

scale of the process. It o�ers an intuitive understanding of the appearance of infrared

renormalons in perturbation theory and their connection to the rate of convergence

of a perturbative series. Moreover, it allows one to separate short- and long-distance

contributions by introducing a hard factorization scale. Several applications to one-

and two-scale problems are discussed in detail.
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1 Introduction

Perturbative expansions in �eld theory are asymptotic, making it necessary from a conceptual
point of view (if not from a practical one) to truncate any perturbative series at some �nite
order in the coupling constant. This truncation introduces renormalization-scale and scheme
dependences. In QCD, this poses a problem because of the strong scale dependence of the
running coupling constant �s(�2) in the low-momentum region. In many cases this puts
limitations on the precision with which experimental data can be described in terms of the
fundamental theory of strong interactions.

Several prescriptions on how to �x the renormalization scale and scheme in a truncated
perturbative series have been proposed [1]{[10]. They all rely, in some way or another, on a
guess about the size of uncalculated higher-order contributions. This guess can be based on
criteria such as the apparent rate of convergence of a series, the size of the coe�cient of the
last term in the truncated series, or the sensitivity to changes of the renormalization scale
and scheme. It can also rely on physical criteria such as the role of various mass scales in
a given problem. An example for such a physical scheme is provided by the scale-setting
prescription of Brodsky, Lepage and Mackenzie (BLM), which amounts to absorb certain
vacuum polarization e�ects appearing at two-loop order into the one-loop running coupling
constant [4]. Extensions of this scheme beyond the one-loop order have been considered in
Refs. [10]{[12].

A large higher-order coe�cient in a perturbative series can arise from an anomalously
large contribution of a particular set of higher-order diagrams. For instance, one can imagine
a series with a large two-loop coe�cient, but small one-loop and higher-order coe�cients.
Such \genuine" higher-order e�ects are hard to anticipate without a detailed calculation. On
the other hand, it is possible that large higher-order corrections result from an inappropriate
choice of the renormalization scale or scheme. In particular, a change of the scale in the
running coupling constant at one-loop order leads to a change proportional to �0 �2

s at two-
loop order, where �0 = 11� 2

3
nf is the �rst coe�cient of the �-function, and nf denotes the

number of light quark 
avours. Since �0 is large in QCD, such e�ects can be numerically
signi�cant. An appropriate choice of scale should try to minimize this type of higher-order
terms. Surprisingly, however, one �nds that even in one-scale problems using the \natural"
scale in the running coupling constant at one-loop order often leaves large corrections of order
�0 �

2
s. Let us consider some examples related to heavy quark systems: (i) the relation between

the pole mass mb of the bottom quark and the mass mb(mb) renormalized in the modi�ed
minimal subtraction (MS) scheme; (ii) the ratio of the decay constants of pseudoscalar and
vector mesons, B and B�, in the so-called static limit; (iii) the parton model prediction for the
semi-leptonic decay rate �(b ! u e ��e). At two-loop order, the corresponding perturbative
series are [13]{[15]
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where the constant k is yet unknown. In all cases the running coupling constant is renormal-
ized in the MS scheme. For nf = 4, the parts of the two-loop coe�cients proportional to �0
are 13.02, 4.40, and 26.08, respectively. At least in the �rst two examples these terms pro-
vide the dominant part of the two-loop corrections. Moreover, in all three cases the two-loop
corrections are quite large, casting doubt on the convergence of the perturbative series. An
important example related to light quarks is the so-called D-function, which is proportional
to the derivative of the correlator of two vector currents containing massless quark �elds. At
two-loop order, one �nds [16]{[18]

D(Q2) = 1 +
�s(Q2)

�
+ (0:17�0 + 0:08)

 
�s(Q2)

�

!2

+ : : : ; (2)

where Q2 denotes the euclidean momentum transfer. Again, the term proportional to �0
dominates the two-loop coe�cient. However, the absolute size of the two-loop correction is
smaller than in the cases considered above.

The appearance of large corrections proportional to �0 �2
s can be interpreted as an inap-

propriate choice of scale in the one-loop running coupling constant. BLM have argued that
one should absorb these terms, which arise from self-energy corrections to the gluon prop-
agator, into the one-loop running coupling constant. This prescription de�nes the so-called
BLM scale �BLM . For the above examples, one �nds (in the MS scheme): �BLM = 0:10mb,
0:21mb, 0:07mb, and 0:71

p
Q2. Clearly, if the BLM scale is to be interpreted as a \typical"

scale of virtual momenta in the corresponding Feynman diagrams, the question arises why
it is often much lower than the \natural" mass scale in the problem at hand.

To analyse this issue, we propose a generalization of the BLM prescription. Consider
the perturbative calculation of a physical (i.e. renormalization-scheme invariant and infrared
�nite) quantity S(M2), which depends upon a single large mass scale M . We restrict our
discussion to Green functions without external gluons. A generalization of the method to
physical cross sections and inclusive decay rates, which receive both virtual and real gluon
corrections, will be presented elsewhere [19]. The aim of the BLM prescription is to \guess"
the average virtuality of the gluon in a loop diagram and to use it as the scale in the running
coupling constant. Clearly, a better way to proceed would be to perform the calculation
with a running coupling constant �s(�k2) at the vertices, where k is the momentum 
owing
through the virtual gluon line. The result of such an improved calculation, which we denote
by Sres(M2) since it corresponds to a partial resummation of the perturbative series (see
below), may be written as

Sres(M
2) =

Z
d4k �s(�k2) f(k;M; : : :) �

1Z
0

dtw(t)
�s(tM2)

4�
; (3)

where f(k;M; : : :) is the integrand of the Feynman diagrams. The function w(t) describes
the distribution of virtualities in the loop calculation. The integral over this distribution
function corresponds to an average of the running coupling constant over the loop momenta
in one-loop diagrams and, in a way, provides the optimal improvement that can be achieved
without a complete higher-order calculation.

The fact that the integration in (3) extends to t ! 0 indicates the appearance of
non-perturbative e�ects. It makes explicit that any perturbative calculation receives long-
distance contributions from the integration over low momenta in Feynman diagrams. We
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shall discuss the signi�cance of these contributions at length below. Here we just note that
our approach goes beyond perturbation theory since it is equivalent to the resummation of
an in�nite number of terms in the perturbative series for the quantity S(M2). Let us write
this series in the general form

Spert(M
2) =

1X
n=1

 
�s(M2)

4�

!n

Sn : (4)

The expansion coe�cients Sn can be written as a power series in the number of light quark

avours or, equivalently, as a series in powers of �0. We restrict ourselves to cases where
the calculation of the one-loop coe�cient S1 does not involve the non-abelian gluon self
couplings, and where there are no external gluons. Then the �rst dependence on nf comes
at two-loop order, and in general the coe�cients can be written in the form

Sn = cn �
n�1
0 + dn �

n�2
0 + : : :+ kn = cn

�
� 2

3
nf
�n�1

+O(nn�2f ) : (5)

The coe�cient cn in front of the highest power of �0 is proportional to the coe�cient in front
of the highest power of nf . This implies that cn can be calculated from \quasi one-loop"
diagrams, in which a gluon line is dressed by (n�1) light-quark loops. It is the partial series
built up by the terms proportional to cn which is resummed in our approach. To see this, we
use the one-loop renormalization-group equation for the running coupling constant to relate
�s(tM2) in (3) to �s(M2):

�s(tM
2) = �s(M

2)
1X
n=1

 
�0 �s(M2)

4�

!n�1

(� ln t)n�1 : (6)

Under the above assumptions it is easy to see that the running of the coupling constant is
the only source of terms of order �n�10 �ns in the series (4). We thus conclude that

Sres(M
2) =

1Z
0

dtw(t)
�s(tM2)

4�
=

1X
n=1

 
�s(M2)

4�

!n

cn �
n�1
0 : (7)

The BLM prescription is to absorb the two-loop term c2 �0 �
2
s into a rede�nition of the

scale used in the coupling constant at one-loop order. It is equivalent to setting wBLM(t) =
c1 �(t� e�c2=c1), thus choosing an average virtuality �2BLM = exp(�c2=c1)M2 for the gluon.
Already at this point it is clear that this can only be a good approximation if the distribution
function w(t) is narrow. If it is wide, it is better to perform the integral in (3), which resums
all terms of the form cn �

n�1
0 �ns .

Clearly, the resummation in (3) does not replace a full higher-order calculation. For
instance, \genuine" two-loop corrections not related to the running of the coupling constant
are not taken into account. Nevertheless, our approach can be considered as an optimal
improvement of one-loop calculations, which takes into account the full information contained
in one-loop diagrams combined with the running of the coupling constant. As such, we
believe that the construction of the distribution function w(t) is an interesting new concept,
which provides information that goes beyond what is contained in a low-order perturbative
calculation.
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In Sect. 2 we generalize the above discussion in such a way that the scale and scheme
independence of the procedure become apparent. In Sect. 3 we discuss the asymptotic be-
haviour of the distribution function and its relation to the ultraviolet and infrared properties
of the perturbative series. In particular, we trace the appearance of infrared renormalons
and discuss how to separate short- and long-distance contributions by introducing a hard
factorization scale. In Sects. 4 and 5 we calculate the distribution function for several one-
and two-scale problems, among them most of the quantities considered in (1) and (2). We
present a detailed numerical analysis, in which we compare the results for the resummed
series to low-order calculations and investigate the relative size of short- and long-distance
contributions. Section 6 contains a summary and conclusions.

2 Construction of the distribution function

We will now repeat the above argument in a slightly more general form, which allows us to
keep track of scale and scheme dependence. Consider some dimensionless, infrared-safe and
renormalization-scheme invariant quantity S(M2; z), which depends upon some large mass
scale M and, in the most general case, on a set of dimensionless parameters z. For instance,
in a two-scale problem we may choose M2 = m1m2 and z = m2=m1. Let us investigate the
perturbative series of S(M2; z) in powers of the coupling constant �Rs (�

2) renormalized at
some scale � and in some renormalization scheme R:

Spert(M
2; z) =

1X
n=1

 
�Rs (�

2)

4�

!n

SR
n (�;M; z) : (8)

The scale and scheme dependence in (8) cancels between the coe�cient functions and the
coupling constant. As in (5), the coe�cients can be expanded in powers of �0,

SR
n (�;M; z) = cRn (�;M; z)�n�10 + : : : ; (9)

and we de�ne a function wR(t; �;M; z) such that

Sres(M
2; z) =

1Z
0

dtwR(t; �;M; z)
�Rs (t �

2)

4�
=

1X
n=1

 
�Rs (�

2)

4�

!n

cRn (�;M; z)�n�10 : (10)

Using (6) and the fact that, by construction, the distribution function must be independent
of nf , one can derive a relation between the moments of the distribution function and the
coe�cients cRn . It reads

1Z
0

dtwR(t; �;M; z) (� ln t)n�1 = cRn (�;M; z) ; n � 1 : (11)

By inverting this relation one can in principle obtain the distribution function from the
knowledge of the set of coe�cients fcRn g. This observation is crucial, as it implies that in
order to construct the distribution function it is su�cient to consider the perturbative series
(8) in the �ctitious limit �0 !1 (or nf !�1).
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To proceed, it is convenient to construct a generating function for the coe�cients cRn ,
which we de�ne as eSR(u; �;M; z) =

1X
n=1

un�1

�(n)
cRn (�;M; z) ; (12)

so that

cRn (�;M; z) =

 
d

du

!n�1 eSR(u; �;M; z)
���
u=0

: (13)

This generating function is the Borel transform of the series (8) with respect to the inverse
coupling constant [20], in the limit �0 !1. Eq. (12) can be formally inverted to give

Sres(M
2; z) =

1

�0

1Z
0

du eSR(u; �;M; z) exp

 
� 4�u

�0�Rs (�
2)

!
: (14)

In cases where the integral exists, this equation de�nes the Borel sum of the partial series
Sres(M2; z). In general, however, the Borel transform has singularities on the real u-axis, cor-
responding a factorial growth of the expansion coe�cients cRn . Much of the non-perturbative
structure of QCD can be inferred from a study of the Borel transform [20]{[27]. Its singu-
larities on the negative axis arise from the large-momentum region in Feynman diagrams
and are called ultraviolet renormalons. They are Borel summable and pose no problem to
performing the Laplace integral in (14). Singularities on the positive axis arise from the
low-momentum region in Feynman diagrams and are called infrared renormalons. Their
presence leads to an ambiguity in the evaluation of the Laplace integral. In the following
section we will discuss how this ambiguity is re
ected in the integral over the distribution
function in (3).

The Borel transform de�ned in (12) can be calculated by evaluating one-loop diagrams
in which the gluon propagator in Landau gauge is replaced by [27]

D��
ab (k) = i�ab

 
eC

�2

!
�u

k�k� � g��k2

(�k2)2+u ; (15)

where C is a scheme-dependent constant related to the �nite part of a renormalized fermion-
loop insertion on the gluon propagator. Since we have assumed that the expansion coe�cients
cRn are dimensionless, it follows that the Borel transform can be factorized as

eSR(u; �;M; z) =

 
eCM2

�2

!
�u bS(u; z) ; (16)

where the new function bS(u; z) is scale- and scheme-independent. From (11) and (12), we
�nd that the Borel transform can be expressed in terms of the distribution function by the
integral relation

eSR(u; �;M; z) =

1Z
0

dtwR(t; �;M; z) t�u ; (17)

which can be inverted to give

wR(t; �;M; z) =
1

2�it

u0+i1Z
u0�i1

du bS(u; z)
 

t �2

eCM2

!u

: (18)
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The choice of u0 is arbitrary provided the integral exists. It follows that the distribution
density wR dt depends on t, � and M only in the combination

� =
t �2

eCM2
: (19)

If we introduce � as a new variable and de�ne a new scale- and scheme-independent functionbw(�; z) so that
bw(�; z) = 1

2�i

u0+i1Z
u0�i1

du bS(u; z) �u�1 ;

bS(u; z) =
1Z
0

d� bw(�; z) ��u ;

cRn (1; z) =

1Z
0

d� bw(�; z) (�C � ln � )n�1 ; (20)

eq. (10) can be written in a form that makes explicit the renormalization-scheme invariance
of the perturbative series:

Sres(M
2; z) =

1Z
0

d� bw(�; z) �s(�eCM2)

4�
=

1X
n=1

 
�Rs (�

2)

4�

!n

cRn (�;M; z)�n�10 : (21)

Note that the scheme-dependence of the constant C is such that the value of the cou-
pling constant �s(eC�2) is scheme-independent. This implies that the product e�C=2�QCD is
scheme-independent, where �QCD is the scale parameter in the one-loop expression for the
running coupling constant. We note that C = �5=3 in theMS scheme, C = �5=3+
�ln 4�
in the MS scheme, and C = 0 in the so-called V scheme [4].

As pointed out in the introduction, the integral over the distribution function in (21) is
an improved one-loop approximation to the quantity S(M2; z). It is instructive to compare
this approximation to the BLM scale-setting prescription. We �nd

Sres(M
2; z) =

1Z
0

d� bw(�; z) �s(�eCM2)

4�
= N

*
�s(�eCM2)

�

+

= N
�s(�

2
BLM)

�

(
1 + �

 
�0�s(�

2
BLM)

4�

!2

+ : : :

)
; (22)

where

N =
1

4

1Z
0

d� bw(�; z) ;
�2BLM = exp

�
hln � i+ C

�
M2 ;

� = �2� = hln2� i � hln � i2 : (23)
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We use the symbol

hf(� )i =

1R
0
d� bw(�; z) f(� )
1R
0
d� bw(�; z) (24)

for the average of a function f(� ) over the distribution bw(�; z). Both the value of the coupling
constant �s(�2BLM) and the parameter � are renormalization-scheme invariant. We observe
that the �rst correction to the BLM scheme is related to the width of the distribution
function. Note, however, that in some cases the distribution function is not of a de�nite
sign and has no probabilistic interpretation. Thus, it may happen that �2� is negative or
that the normalization integral N vanishes, in which case hf(� )i would be ill-de�ned. If the
distribution function has a de�nite sign, on the other hand, the quantity

�BLM = �

 
�0 �s(�

2
BLM)

4�

!2

=
hln2� i � hln � i2

[ ln(M2=�2
V ) + hln � i]2

; (25)

provides a measure of the rate of convergence of the perturbative series. Here

�V = e�C=2�QCD = e5=6�MS (26)

is a scheme-independent parameter, which coincides with the QCD scale parameter in the
V scheme.

At this point it is worthwhile to point out the advantages of our resummation over the
BLM prescription. In our approach all terms of order �n�10 �ns in the perturbative series are
resummed exactly, whereas the BLM scheme only resums the two-loop term of order �0 �2

s

correctly. Moreover, our scheme is additive in the sense that the distribution function for the
sum of two quantities is the sum of the individual distribution functions: bwA+B = bwA + bwB.
No such relation exists for the corresponding BLM scales. In particular, both A and B can
have small BLM scales, but the BLM scale for the sum (A+B) can be large, or vice versa.
This brings us to the most important point, which is that the size of the BLM scale cannot
always be used as an indicator for the rate of convergence of a perturbative series. The size
of higher-order coe�cients depends on the size of moments of the distribution function, not
only on its central value, which determines the BLM scale.

3 Asymptotic behaviour, infrared renormalons and the

separation of long-distance contributions

Before we calculate the distribution function for speci�c examples we address the relevance
of its asymptotic behaviour for large and small values of � . Clearly, the behaviour for � !1
is related to the ultraviolet properties of the perturbative series. In particular, only if bw(�; z)
vanishes faster than 1=� the integral in (22) converges. Otherwise, our approach provides
the framework for a consistent cuto� regularization of the series. Performing the integral up
to a value �UV corresponds to a hard momentum cuto� �2

UV = �UVM
2.

More subtle is the infrared region � ! 0. As long as one stays within perturbation theory
one faces the problem that the integral over the distribution function runs over the Landau
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pole in the running coupling constant. One is forced to specify how to treat this pole, for
instance by deforming the integration contour. In general, we may write

�0�s(�eCM2)

4�
=

1

lnM2=�2
V + ln �

= P

�
1

ln � � ln �L

�
+ � �(ln � � ln �L) ; (27)

where �L = �2
V =M

2 is the position of the Landau pole, \P" denotes the principle value, and
� is a complex parameter of order unity, which depends on the regularization prescription.
This prescription dependence leads to an intrinsic ambiguity in the perturbative de�nition
of S(M2; z), re
ecting the fact that in (21) we are trying to sum up a series which is not
Borel summable. This is how infrared renormalons make their appearance in our approach.
Following Refs. [28]{[30], we de�ne the renormalon ambiguity �Sren in the value of S(M2; z)
as the coe�cient of � and �nd

�Sren =
�L

�0
bw(�L; z) ' w0(z)

�0

 
�V

M

!2k

: (28)

In the last step we have used the fact that �L � 1 to expand the distribution function:

bw(�; z) = w0(z) �
k�1 + : : : for � ! 0. (29)

It is thus the asymptotic behaviour of the distribution function that determines the size of
the renormalon ambiguity. Note that k > 0 in order for the integral over the distribution
function to be infrared convergent. We will see in examples that the power k is related to
the position of the nearest infrared renormalon pole in the Borel transform bS(u; z), which is
located at uIR = k in the Borel plane.

The appearance of infrared renormalons acts as a reminder that in (22) one is using
perturbation theory in a regime where it is known to break down, namely in the infrared
region. Hence, the result of any perturbative calculation in QCD is incomplete; it must
be supplemented by non-perturbative corrections. Only the sum of all perturbative and
non-perturbative contributions is unambiguous. Unlike any �nite-order calculation, the rep-
resentation (22) makes explicit that perturbative calculations contain long-distance contri-
butions from the region of low momenta in Feynman diagrams. Moreover, it provides a
convenient way to separate these long-distance contributions from the short-distance ones
by introducing a hard factorization scale �. Thus, our approach can be used to implement
Wilson's construction of the operator product expansion (OPE) [31] in a literal way. Let us
recall that the OPE is not designed to separate perturbative and non-perturbative e�ects,
but to disentangle the physics on di�erent length scales. In the calculation of short-distance
corrections (the Wilson coe�cient functions) one eliminates the contributions from small
virtualities (k < �) in Feynman diagrams. These long-distance contributions are attributed
to some matrix elements of higher-dimensional operators. Thus, we should write

Sres(M
2; z) =

1Z
�2=M2

d� bw(�; z) �s(�eCM2)

4�
+

�2=M2Z
0

d� bw(�; z) �s(�eCM2)

4�

� Ssd(M
2; �; z) + Sld(M

2; �; z) : (30)
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Note that the factorization point � = �2=M2 corresponds to a scheme-dependent scale
�2 = eC�2 in the running coupling constant, with � = � in the V scheme. The value
of �s(eC�2) is scheme-independent, however. As long as � is chosen large enough, the short-
distance contribution Ssd can be reliably calculated in perturbation theory and is free of
renormalon ambiguities. The long-distance contribution Sld must be combined with other
non-perturbative corrections. Only the sum of all long-distance contributions is well de�ned.
Of course, the dependence on the arbitrary scale � must cancel in the �nal result. This �-
dependence can be controlled in perturbation theory by means of the renormalization-group
equation

�
d

d�
Ssd(M

2; �; z) = �� d

d�
Sld(M

2; �; z) = ��s(e
C�2)

2�

�2

M2
bw(�2=M2; z) : (31)

Since we have required that the quantity S(M2; z) be infrared safe, the long-distance
contribution Sld is �nite, and it is usually assumed that it is small compared to the short-
distance contribution. Eq. (30) allows us to quantify this statement. If the factorization
scale is chosen such that � � M , the M -dependence of the long-distance contribution is
again determined by the asymptotic behaviour of the distribution function for small values
of � . We �nd

Sld(M
2; �; z) ' w0(z)

M2k

�2Z
0

d�2 �2(k�1)
�s(eC�2)

4�
� �

 
�(�)

M

!2k

; (32)

where �(�) is of order the QCD scale, and the sign is determined by the sign of w0. The
long-distance contribution is indeed parametrically small, suppressed by inverse powers of
the large mass scale M . It is, of course, no accident that long-distance e�ects appear at
the same order in 1=M as infrared renormalon ambiguities. Both e�ects are exponentially
small in the coupling constant and thus not seen in any �nite-order perturbative calculation.
Nevertheless, we will see that in cases where there is a nearby infrared renormalon (i.e. when
the power k is small) the long-distance contribution and the renormalon ambiguity can be
numerically signi�cant. One can try to estimate the size of Sld by incorporating certain non-
perturbative e�ects into the integral over the distribution function, for instance by using a
more realistic ansatz for the running coupling constant in the infrared region. For instance,
one may assume that the coupling constant �s(�

2) stays positive and approaches a constant
for � ! 0. It is then possible to perform the � -integral without encountering a Landau
pole. This yields to an unambiguous (though model-dependent) result for the long-distance
contribution.

4 Heavy quark systems

We now illustrate the formalism developed above with some quantities related to heavy
quarks, which provide prototype examples for large-scale problems in QCD. The large mass
scaleM is provided by a heavy quark massmQ. Sects. 4.1{4.3 deal with the derivation of the
distribution function for several quantities of interest. In Sect. 4.4 we present a numerical
analysis of the results.
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4.1 Pole mass of a heavy quark

We start with the relation between the pole mass mQ and the (in�nite) bare mass m0, which
appears as a parameter in the QCD Lagrangian. We de�ne

Sm(m
2
Q) =

mQ

m0

� 1 (33)

and aim for a representation of this quantity as an integral over a distribution functionbwm(� ), as shown in (22). In the large-�0 limit, the Borel transform corresponding to the
perturbative series for Sm(m2

Q) has the simple form [28]

bSm(u) = 6CF (1 � u)
�(u) �(1 � 2u)

�(3 � u)
; (34)

where CF = 4=3 is a colour factor. To derive the distribution function, we rewrite

(1 � u)
�(u) �(1 � 2u)

�(3 � u)
=

1Z
0

dx

1Z
0

dy xu�1(1 � x)�2u y1�u (35)

and use the second relation in (20) to obtain

bwm(� ) = 6CF

1Z
0

dx

x

1Z
0

dy y �

�
� � (1 � x)2y

x

�
: (36)

After a straightforward calculation, we �nd

bwm(� ) = CF

(
�

2
+
�
1� �

2

�s
1 +

4

�

)
: (37)

The small-� behaviour of bwm(� ) is

bwm(� ) =
2CFp
�
+O(

p
�) ; (38)

corresponding to k = 1=2 in (29). This behaviour is associated with the infrared renormalon
pole at u = 1=2 in the Borel transform in (34). According to (28), the corresponding
ambiguity in the perturbative series for mQ=m0 is

(�Sm)ren =
(�mQ)ren

mQ

=
8

3�0

�V

mQ

; (39)

implying an ambiguity (�mQ)ren = (8=3�0) �V in the value of the pole mass [28, 29].
For large values of � the distribution function decreases as 3CF=� , so that the integral

in (22) is logarithmically divergent. The divergence is removed by a renormalization of the
bare mass. It turns out that the calculation of the distribution function is complicated if one
chooses the MS scheme for this purpose. The Borel transform corresponding to the ratio
mQ=mQ(mQ) is given by [28]

bSMS
m (u) = CF

(
6(1 � u)

�(u) �(1 � 2u)

�(3 � u)
+ e�5u=3

�
� 3

u
+R(u)

�)
; (40)
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where

R(u) = �5

2
+
35

24
u+

�
�(3)� 83

144

�
u2 + : : : (41)

is a rather complicated function. Instead, we �nd it instructive to consider a class of renor-
malization schemes R[r] which are more convenient for our calculation. We de�ne the Borel
transform corresponding to the ratio mQ=m

R
Q as

bSR
m(u) = CF

(
6(1 � u)

�(u) �(1 � 2u)

�(3 � u)
� 3

u
e�ru

)
(42)

and treat r as a free parameter. From a comparison of the Borel transforms bSMS
m and bSR

m

one �nds that the relation between the so-de�ned mass mR
Q and the mass renormalized in

the MS scheme is given by

mR
Q

mQ(mQ)
= 1 �

�
r � 5

6

�
��s
�

+
�0

8

�
r2 � 10r

3
+
15

4

��
��s
�

�2

� �2
0

48

�
r3 � 5r2 +

25r

3
� 751

216
� 2�(3)

��
��s
�

�3
+ : : : ; (43)

where ��s = �s(m2
Q) denotes the coupling constant in the MS scheme. It is a simple exercise

to calculate the distribution function for the ratio mQ=m
R
Q. The result is

bwR
m(� ) = bwm(� )� 3CF

�
�(� � er) ; (44)

which simply amounts to a subtraction of the high-momentum contributions, leaving the
low-momentum region una�ected. The subtracted distribution function falls o� as 1=� 2 for
large values of � , so that the integral over � is convergent.

With the distribution function bwR
m(� ) we compute

N =
�
3

8
+
3r

4

�
CF =

1

2
+ r ;

hln � i = r2 � 1
2
� 2

3
�2

2r + 1
;

hln2� i = 2

3

r3 + 3
4
+ 12�(3) + �2

2r + 1
; (45)

which is all one needs to calculate the BLM scale and the parameter � de�ned in (23). Two
cases are particularly interesting:

scheme R1: r =
5

6
;

scheme R2: r = r0 =

s
1

2
+
2�2

3
' 2:661 : (46)

Since the one-loop coe�cient in (43) vanishes for r = 5=6, scheme R1 is similar to the MS

scheme. The relation between the mass de�nitions in the two schemes is

mR1
Q

mQ(mQ)
= 1 + 0:208�0

�
��s
�

�2
+ 0:038�2

0

�
��s
�

�3
+ : : : ; (47)
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Table 1: Parameters related to the distribution function bwR
m(� ) for three di�erent

mass renormalization schemes. We use the one-loop expression for the running
coupling constant in the MS scheme, normalized such that �s(m2

b) = 0:218 for
mb = 4:8 GeV.

�VBLM �MS
BLM �s(�2BLM) � �BLM

mb=m
R1
b 0:302mb 0:131mb 0.55 0.672 0.10

mb=m
R2
b mb 0:435mb 0.29 4.628 0.17

mb=mb(mb) 0:221mb 0:096mb 0.73 �4:337 �1:19

which is a nicely converging series. For the bottom quark the ratio equals 1.009. The scheme
R2 is chosen such that hln � i = 0, so that the BLM scale is given by �2BLM = eCm2

Q. In this
case one �nds

mR2
Q

mQ(mQ)
= 1 � 1:827

��s
�

+ 0:245�0

�
��s
�

�2
+ 0:006�2

0

�
��s
�

�3
+ : : : ; (48)

which has a sizeable one-loop coe�cient but is again nicely converging. For the bottom
quark the ratio equals 0.883.

In Table 1 we give, for the case of the bottom quark, the results for the BLM scale in
three di�erent mass renormalization schemes (R1, R2, MS) and for two renormalization
schemes for the coupling constant (V and MS). We also quote the corresponding scheme-
independent values of �s(�2BLM), as well as the parameters � and �BLM de�ned in (23) and
(25). We note that the distribution function corresponding to the MS scheme must satisfy

N = CF =
4

3
;

hln � i = �53

96
� �2

4
' �3:019 ;

hln2� i = 7

2
�(3) � 1637

864
+
�2

4
' 4:780 ; (49)

as can be derived from an expansion of the Borel transform (40) in powers of u. The large
negative values of the parameters � and �BLM for the ratio mb=mb(mb) indicate that there
are large corrections to the BLM scheme which decrease the value of the perturbative series.
In other words, the BLM scale is too low and does not really represent an \average" virtuality.
The reason for the strong dependence of the BLM scale on the subtraction scheme becomes
apparent from the shape of the distribution functions shown in Fig. 1. We �nd it most
useful to show the product � bw(� ) as a function of ln � , since then the integrals hlnn� i have
a direct graphical interpretation. The long arrows indicate the position of the BLM scale in
the schemes R1 and R2. The small arrow shows the point � = �2=m2

b for � = 1 GeV, which
will later be used to separate short- and long-distance contributions [cf. (30)]. In order to
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associate mass scales with the � -values in the �gure, we note that

ln
�2

m2
b

= ln � + C ; (50)

where � is the scale in the running coupling constant. In the V scheme, where C = 0, the
point � = �2=m2

b corresponds to the scale � = �, whereas ln � = 0 corresponds to � = mb.
In the MS scheme, where C = �5=3, the point � = mb corresponds to ln � = 5=3.

R1 R2

-6 -4 -2 0 2 4 6
ln τ

-2

0

2

4

τ 
 w

(τ
)

Figure 1: Distribution function for the ratio mb=m
R
b in the two renormal-

ization schemes R1 (solid line) and R2 (dashed-dotted line). The dotted
line shows the unsubtracted distribution function for the ratio of the pole
mass and the bare mass. The long arrows indicate the position of the
BLM scale in the schemes R1 and R2. The small arrow shows the fac-
torization point, which separates short- and long-distance contributions.

We observe that the pole mass gets contributions from all momentum scales, and it is
only the subtraction of the high-momentum tail that leads to a negative value of hln � i in
the scheme R1 (and similar for the MS scheme). If the subtraction point is chosen as low
as in R1, signi�cant cancellations take place between positive and negative contributions in
the integral over the distribution function. The results is a small one-loop coe�cient N in
(23), yielding in turn a small BLM scale. Thus, the interpretation of the BLM scale as a
\typical" scale in a process becomes misleading if the distribution function gets contributions
of opposite sign. Note that the situation encountered here is generic for quantities which
require a subtraction of ultraviolet divergences. In such cases, a low value of the BLM scale
does not necessarily imply a bad convergence of the perturbative series.

The series in (43) is interesting by itself. Since both mR
Q and mQ(mQ) are subtracted

at a large mass scale, their ratio has a well-behaved expansion in powers of �s(m2
Q) as

long as r is of order unity. In fact, for the two choices of r discussed above the series
was rapidly converging. Nevertheless, the BLM scale corresponding to this series exhibits a
strong dependence on r. We �nd �2BLM = eC [
(r)mQ]2 with

ln 
(r) =
r2 + 35

36

4r � 10
3

: (51)
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Figure 2: The function 
(r) de�ned in (51).

This function is shown in Fig. 2. The reason for the dramatic scheme dependence of �BLM is
simply that the one-loop coe�cient vanishes for r = 5=6. This example shows that a small
BLM scale is not always related to a badly converging series. It also shows the disadvantage
of non-additivity of the BLM prescription: As shown in Table 1, the BLM scale for the ratio
mQ=mQ(mQ) is rather low. However, the same ratio can be obtained by combining the two
series for mQ=m

R
Q and mR

Q=mQ(mQ) in the scheme R2, both of which have a much larger
BLM scale. On the other hand, calculating mQ=mQ(mQ) by combining integrals over the
appropriate distribution functions one obtains a unique result, in which the contributions
from all scales are properly taken into account.

4.2 Matching coe�cients of heavy{light currents

A convenient way to analyse hadronic matrix elements of the 
avour-changing weak current
j� = �q 
�(1 � 
5)Q between a hadron containing the heavy quark Q and some light �nal
state is to go over to an e�ective theory, the so-called heavy quark e�ective theory [32], in
which such matrix elements are systematically expanded in powers of 1=mQ. When QCD is
matched onto the e�ective theory, the current gets replaced by [33]

j� ! C1(m
2
Q) �q 


�(1� 
5)hv + C2(m
2
Q) �q v

�(1 + 
5)hv +O(1=mQ) ; (52)

where v is the four-velocity of the hadron that contains the heavy quark, and hv is the
velocity-dependent heavy quark �eld in the e�ective theory. The above form of the currents is
correct if one uses a regularization schemewith anti-commuting 
5. The matching coe�cients
Ci(m2

Q) can be calculated in perturbation theory by comparing quark matrix elements of the
currents in QCD and in the e�ective theory. We de�ne

S1(m
2
Q) = C1(m

2
Q)� 1 ; S2(m

2
Q) = C2(m

2
Q) : (53)

In the large-�0 limit, the Borel transforms of the perturbative series for these quantities are
given by [30]

bS1(u) = CF (3u
2 � u� 3)

�(u) �(1 � 2u)

�(3 � u)
;
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Table 2: Parameters related to the distribution function bw2(� ), which is relevant for
the ratio of heavy meson decay constants.

�VBLM �MS
BLM �s(�2BLM) �� � �BLM

f statB =f statB� 0:472mb 0:205mb 0.41 2.798 7.830 0.67

bS2(u) = 4CF

�(1 + u) �(1 � 2u)

�(3 � u)
: (54)

The corresponding distribution functions can be calculated as outlined in the previous sec-
tion. We �nd

bw1(� ) =
CF

2

(
1� 7

6
� � 3

2
q
1 + 4=�

� 11 � 7�

6

s
1 +

4

�

)
;

bw2(� ) =
2CF

3

(
(1 + � )

s
1 +

4

�
� 3 � �

)
: (55)

The asymptotic behaviour for small values of � is

bw1(� ) = �11CF

6
p
�
+O(1) ; bw2(� ) =

4CF

3
p
�
+O(1) ; (56)

corresponding to the infrared renormalon poles at u = 1=2 in the Borel transforms in (54).
If we relate the corresponding renormalon ambiguities to the ambiguity in the value of the
pole mass [cf. (38) and (39)], we recover the relations

(�C1)ren = �11

12

(�mQ)ren
mQ

; (�C2)ren =
2

3

(�mQ)ren
mQ

(57)

derived in Ref. [30]. The behaviour of the distribution functions for large values of � isbw1(� ) � 1=� and bw2(� ) � 1=� 2. The slow fall-o� of bw1(� ) leads to a logarithmic divergence
in C1(m2

Q), which must be removed by renormalization.
As an application of these results, consider the ratio of the decay constants of the pseu-

doscalar and vector mesons B and B� in the so-called static limit, where terms of order
�QCD=mb are neglected on the level of hadronic matrix elements. In this limit, one �nds [34]

f statB

f statB�

= 1 +
C2(m2

Q)

C1(m2
Q)

= 1 +

1Z
0

d� bw2(� )
�s(�eCm2

b)

4�
+ : : : ; (58)

where the ellipses represent terms not resummed in our approach. Since C1(m2
Q) = 1 +

O(1=�0), the distribution function is the same as for the matching coe�cient C2(m
2
Q).

For the distribution function bw2(� ) we compute

N =
CF

2
=

2

3
;
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hln � i = �3

2
;

hln2� i = 7

2
+
2�2

3
: (59)

The resulting value of the BLM scale and some other parameters are summarized in Table 2.
Since in this case the distribution function is positive de�nite, the parameter �� =

p
�

corresponds to the width of the distribution function. The width is very large, about three
units in ln � . This is clearly re
ected in the shape of the function � bw2(� ) shown in Fig. 3. As
indicated by the position of the arrows, the BLM scale is rather low, close to the factorization
point; the distribution is broad and extends well into the infrared region. As a consequence,
the convergence of the series is bad, as re
ected in the large value of the parameter �BLM in
Table 2.

-6 -4 -2 0 2 4 6
ln τ
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 w
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Figure 3: Distribution function for the ratio f statB =f statB� . The right arrow
indicates the BLM scale, the left one the factorization point.

In the case of the ratio mQ=m
R
Q considered above, the BLM scale was low since the

high-momentum contributions were removed, in an ad hoc way, by the renormalization
of the bare quark mass. On the contrary, in the present case there is a physical reason
why the \typical" momenta in the one-loop calculation are much lower than the \natural"
scale mb. The 
avour-changing vector and axial vector currents are partially conserved,
implying that they do not receive radiative corrections from scales much above the masses
of their component �elds [35]. Roughly speaking, then, the matching coe�cients receive
contributions from scales 0 < � < mQ, which is in fact the behaviour re
ected in Fig. 3.
(Recall that � = mQ corresponds to ln � = 0 in the V scheme, and ln � = 5=3 in the MS

scheme.) How fast the distribution falls o� in the infrared region is determined by the
location of the nearest infrared renormalon, which determines the low-� behaviour of the
distribution function. Since in the present case the nearest renormalon is located at u = 1=2
in the Borel plane, i.e. at the smallest possible value of u, the fall-o� is the slowest possible
one, and thus there are substantial contributions from the low-momentum region.
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4.3 Matching coe�cients of heavy{heavy currents

Let us now consider a two-scale problem, namely the matching of 
avour-changing currents
containing two heavy quarks onto their counterparts in the heavy quark e�ective theory. At
the so-called zero recoil point, where the two heavy quarks move at the same velocity, one
�nds [33]

�c 
�b ! �V �h
c
v


�hbv +O(1=m2
Q) ;

�c 
�
5 b ! �A �h
c
v


�
5 h
b
v +O(1=m2

Q) : (60)

The coe�cients �V and �A take into account �nite renormalization e�ects. The coe�cient
�A of the axial vector current plays a crucial role in the model-independent determination
of jVcbj from B ! D�` ��` decays [36].

We choose M =
p
mbmc as the \natural" mass scale and de�ne the ratio z = mc=mb. It

is convenient to study the quantities

SV (mbmc; z) = �V � 1 ; SV�A(mbmc; z) = �V � �A ; (61)

since the structure of the perturbative corrections is very similar for �V and �A. The corre-
sponding Borel transforms in the large-�0 limit are [30, 37]

bSV (u; z) = CF

�(u) �(1 � 2u)

�(2 � u)

(
2(1 + u)

2� u

zu � z1�u

1� z
+
2(1� u)

1 + 2u

z�u � z1+u

1 � z

� 1 + z

1 � z
(zu � z�u)� 3(1� u2)

2� u
(zu + z�u)

)
;

bSV�A(u; z) = 4CF

�(1 + u) �(1 � 2u)

�(3 � u)

zu � z1�u

1� z
: (62)

After a straightforward calculation, we obtain the distribution functions

bwV (�; z) = CF

(
� 1� �

2

(1 � z)2

z
� 3

4
�
(1� z2)2

z2

� 3

4

zq
1 + 4=(�z)

� 3

4

1

z
q
1 + 4z=�

+

s
1 +

4

�z

�
� z

4
+
3

4
� z2 � 2

�

z

1� z
+
�

2

z2

1� z

�

+

s
1 +

4z

�

�
� 1

4z
+
3

4

�

z2
+
2

�

1

1� z
� �

2

1

z(1� z)

�)
;

bwV�A(�; z) = 2CF

(
1 + �

1 + z + z2

3z

� 1

3(1 � z)

"�
1 +

�

2

�s
1 +

4z

�
� z(1 + �z)

s
1 +

4

�z

#)
: (63)
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Table 3: Parameters obtained from the distribution functions for the matching co-
e�cients �V and (�V � �A) of heavy quark currents. We use mb = 4:8 GeV and
mc = 1:44 GeV.

�VBLM �MS
BLM �s(�2BLM) �� � �BLM

�V 2:117
p
mbmc 0:920

p
mbmc 0.27 1.059 1.121 0.04

�V � �A 1:445
p
mbmc 0:628

p
mbmc 0.31 2.069 4.281 0.19

The asymptotic behaviour for small values of � is

bwV (�; z) = �CF

(1 � z)2

2z
+O(

p
� ) ;

bwV�A(�; z) = 2CF +O(
p
�) : (64)

It is associated with infrared renormalon poles at u = 1 in the Borel plane. In fact, a
careful investigation of (62) shows that there are no poles at u = 1=2. The corresponding
renormalon ambiguities in the matching coe�cients are

(��V )ren = � 2

3�0

 
�V

mc

� �V

mb

!2

;

(��A)ren = � 2

3�0

 
�V

mc

+
�V

mb

!2

: (65)

This agrees with the results obtained in Ref. [30]. For large values of � , both distribution
functions fall o� proportional to 1=� 2.

With the above distribution functions, we compute

N =
CF

4
�(z) ' 0:236 ;

hln � i = 3

2
;

hln2� i = 2�2

3
+
9

2
+
1

3
ln2z � 4

ln2z

�(z)
' 3:372 ; (66)

for bwV (�; z), and

N =
CF

2
=

2

3
;

hln � i = 1

2
+
1

3
�(z) ' 0:736 ;

hln2� i = 2�2

3
� 5

2
+ ln2z � �(z) ' 4:821 ; (67)
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for bwV�A(�; z), where

�(z) = �3 1 + z

1� z
ln z � 6 =

ln2z

2
� ln4z

120
+O(ln6z) : (68)

We have used the value z = mc=mb = 0:3 in the numerical analysis. The corresponding BLM
scales and the values of the parameters �� , � and �BLM are given in Table 3. The distribution
functions are shown in Fig. 4. In both cases the BLM scales are comfortably large and are
clearly separated from the factorization point, which corresponds to � = �2=mbmc with
� = 1 GeV. We note that the scales � = mb and � = mc correspond to ln � = �1:204 � C,
with C = 0 in the V scheme and C = �5=3 in the MS scheme. The distributions fall o�
rapidly in the infrared region. Therefore, both series converge much better than in the case
of the heavy{light current considered in the previous section.
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Figure 4: Distribution functions for �V (solid line) and (�V ��A) (dashed-
dotted line). The long arrows show the BLM scales, the short arrow
indicates the factorization point.

The physical reason for this behaviour is again related to current conservation. As before,
the currents are conserved in the ultraviolet region, i.e. for scales �� mb. But in contrast to
heavy{light currents, currents containing two heavy quarks moving at the same velocity are
also conserved in the infrared region, i.e. for �� mc. In fact, at zero recoil the anomalous
dimension associated with such currents in the heavy quark e�ective theory vanishes to all
orders in perturbation theory [38, 39]. This means that the matching coe�cients receive
sizeable contributions only from scales mc < � < mb, which is in accordance with the
behaviour exhibited in Fig. 4.

4.4 Numerical analysis

Let us now analyse our results. For each of the quantities S(M2) considered in the previous
sections, we compare the following approximations: the one- and (partial) two-loop expres-
sions evaluated using the \natural" scale M in the running coupling constant, the one-loop
expression evaluated using the BLM scale, the truncated series including the �rst correction
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Table 4: Comparison of various approximations for the quantities shown in the �rst
column.

S1�loop S2�loop SBLM SBLM� Sres �Sren

mb=m
R1
b 0.092 0.146 0.234 0.259 0.178 0.025

mb=m
R2
b 0.219 0.271 0.288 0.336 0.304 0.025

mb=mb(mb) 0.092 0.155 0.310 �0:059 0.188 0.025

f statB =f statB� 0.046 0.067 0.086 0.144 0.076 0.017

�V 0.020 0.020 0.020 0.021 0.023 �0:003
�V � �A 0.056 0.065 0.067 0.079 0.081 0.007

to the BLM scheme given by the term proportional to � in (22), the partial resummation
provided by the integral over the distribution function. In the latter case we use the principle
value prescription to regularize the Landau pole in the running coupling constant. We de�ne

S1�loop(M
2) = N

�s(M2)

�
;

S2�loop(M
2) = N

�s(M2)

�

(
1 �

�
C + hln � i

� �0�s(M2)

4�

)
;

SBLM(M
2) = N

�s(�2BLM)

�
;

SBLM�(M2) = N
�s(�2BLM)

�

(
1 + �

 
�0�s(�2BLM)

4�

!2)
;

Sres(M
2) = N

*
�s(�eCM2)

�

+
: (69)

Note that S2�loop takes into account only part of the two-loop corrections, namely those
proportional to �0 �

2
s. As pointed out in the introduction, for the quantities considered

here it is known that the remaining two-loop corrections are very small. We use the one-
loop expression for the running coupling constant in the MS scheme with �5 = 111 MeV,
�4 = 150 MeV and �3 = 177 MeV, so that the coupling constant is continuous when one
crosses the quark thresholds at mb = 4:8 GeV and mc = 1:44 GeV. For reference purposes
we quote that �s(m2

b) ' 0:218 and �s(m2
c) ' 0:333. Our results are shown in Table 4. In

the last column we give the value of the renormalon ambiguity de�ned in (28). To obtain it
we use �0 = 9 and �V = 408 MeV, corresponding to nf = 3. The value of �Sren should be
considered as an estimate of the intrinsic ambiguity in the result for the resummed series Sres.

We observe that for the ratios mb=mb(mb) and f statB =f statB� , where the BLM prescription
gives very low scales and the corrections to the BLM scheme are large, the resummation
leads to results similar to the two-loop approximation. Thus, higher-order corrections are
smaller than indicated by the BLM prescription. Nevertheless, in these cases the ambiguity
due to the presence of the nearby infrared renormalon at u = 1=2 is quite signi�cant. For
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Table 5: Comparison of the BLM scale with the scale �
�
corresponding to the partial

resummation of the series. All values refer to the MS scheme. In the V scheme, the
scales are larger by a factor e5=6 ' 2:3

M �BLM=M �
�
=M �

�
=�BLM

mb=m
R1
b mb 0.131 0.195 1.49

mb=m
R2
b mb 0.435 0.378 0.87

mb=mb(mb) mb 0.096 0.179 1.86

f statB =f statB� mb 0.205 0.259 1.26

�V
p
mbmc 0.920 0.690 0.75

�V � �A
p
mbmc 0.628 0.418 0.67

the matching constants �V and �A the resummation follows the tendency indicated by the
BLM scheme, and the results are close to what one obtains taking into account the leading
correction to that scheme. The renormalon ambiguities are smaller in this case, since the
nearest infrared renormalon pole is located at u = 1.

Another way of comparing our resummation to the BLM scheme is to de�ne, for each
series, a scale �

�
such that the one-loop correction evaluated using that scale reproduces the

resummed series. Hence, we write

mb

mR
b

= 1 +
�
1

2
+ r

�
�s(��)

�
;

f statB

f statB�

= 1 +
2

3

�s(��)

�
;

�V = 1 +
�(mc=mb)

3

�s(��)

�
;

�V � �A =
2

3

�s(��)

�
: (70)

In Table 5 these scales are compared to the BLM scales. Note that in the cases with the
lowest BLM scale, namely for the ratios of masses and decay constants, the resummation
leads to a larger scale �

�
> �BLM .

Our next goal is to obtain an estimate for the relative and absolute size of the short-
and long-distance contributions to the various quantities considered above. To this end we
introduce a factorization scale � = 1 GeV and evaluate separately the two integrals Ssd and
Sld de�ned in (30). The factorization scale is chosen such that the value of the coupling
constant �s(eC�2)=� ' 0:25 is still in the perturbative regime (note that eC=2� ' 0:43 GeV
in the MS scheme). In order to model the long-distance contribution, we guess a \realistic"
behaviour of the coupling constant in the infrared region. We use a modi�ed version of the
running coupling constant, which exhibits freezing for �! 0:

�s(e
C�2) =

4�

�0 ln(c+ �2=�2
V )

: (71)
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Table 6: Comparison of resummed \perturbative" series Sres with a model calcula-
tion of the full series including long-distance e�ects, Stot = Ssd(�) +Sld(�). The no-
tation is such that the main values given for Stot, Sld and � correspond to �s(0) = 2,
whereas the corrections indicated as super- and subscripts refer to �s(0) = 1 and 4,
respectively. We use � = 1 GeV for the factorization scale.

Sres Stot Ssd(�) Sld(�) �(�) [MeV]

mb=m
R1
b 0.178 0:243�0:039+0:046 0.138 0:105�0:039+0:046 501�186+221

mb=m
R2
b 0.304 0:369�0:039+0:046 0.264 0:105�0:039+0:046 501�186+221

mb=mb(mb) 0.188 0:252�0:039+0:046 0.147 0:105�0:039+0:046 501�186+221

f statB =f statB� 0.076 0:119�0:023+0:029 0.057 0:062�0:023+0:029 300�111+138

�V 0.023 0:020+0:001
�0:001 0.024 �0:004+0:001

�0:001 154�21+25

�V � �A 0.081 0:083�0:006+0:005 0.064 0:019�0:006+0:005 363�67+47

We shall investigate the cases where c is adjusted so that �s(0) = 1, 2 and 4 (in the MS

scheme), and interpret the dependence of the results on c as a measure of the model de-
pendence. In Table 6 we compare the sum Stot = Ssd + Sld to the \perturbative" resum-
mation obtained using the one-loop running coupling constant regulated with a principle
value prescription. We also give the results for the short- and long-distance contributions
separately. For each case, we write the long-distance contribution as a power correction,
jSldj = (�=M)2k, and quote the value of the low-energy scale �. We observe that the long-
distance contribution is large, as big as the short-distance one, for the ratios of the heavy
quark masses (in the schemes R1 and MS) and for the ratio of the decay constants. The rea-
son is that the nearest infrared renormalon is located at u = 1=2, leading to non-perturbative
corrections suppressed by only one power of the large mass scale mb. In general, the scales
� associated with the long-distance contributions are typical low-energy scales of QCD.

In Figs. 5 and 6 we show our predictions for the short-distance contributions to the
quantities mb=mb(mb), fB=fB�, �V and �A as a function of the factorization scale in the
range �0 < � < M , where �0 ' 0:823 GeV is the point where �s(eC�20) = 1. These results
will become useful once non-perturbative calculations of matrix elements performed with a
hard ultraviolet cuto� become available. The idea to introduce a hard factorization scale to
organize the heavy quark expansion has been put forward recently by Bigi et al. [29]. Our
approach provides a consistent framework to implement this proposal. Let us illustrate this
with two examples of phenomenological importance. The �rst is the ratio of the physical
meson decay constants fB and fB�, which is related to the ratio de�ned in the static limit
by

fB

fB�

=
f statB

f statB�

+
A

mb

+O(1=m2
b) : (72)

The non-perturbative parameter A can be de�ned in terms of hadronic matrix elements of
dimension-four operators in the heavy quark e�ective theory [34], which have to be estimated
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Figure 5: Short-distance contributions to mb(�)=mb(mb) (solid line) and
(fB=fB�)(�) (dashed-dotted line) as a function of the factorization scale.

using non-perturbative techniques such as lattice gauge theory or QCD sum rules. These
matrix elements are linearly ultraviolet divergent. If in the calculation of A one introduces
a hard ultraviolet cuto� � in the same way as it was done for the perturbative calculation
in the static limit, these matrix elements contain those long-distance contributions excluded
in the short-distance calculation. Hence, one obtains

fB

fB�

= 1 + Ssd(m
2
b ; �) +

A(�)

mb

+O(1=m2
b ) �

fB

fB�

(�) +
A(�)

mb

+O(1=m2
b ) : (73)

Our resummed expression for the short-distance contribution is

Ssd(m
2
b ; �) =

1Z
�2=m2

b

d� bw2(� )
�s(�eCm2

b)

4�
; (74)

where the distribution function bw2(� ) has been given in (55). The �-dependence in (73)
cancels between the short- and long-distance pieces. Let us note that often heavy quark
expansions such as (72) are written down using dimensional regularization, in which case
there is no clear separation between short- and long-distance contributions. Then the per-
turbative series contains an infrared renormalon at u = 1=2, which is exactly compensated
by an ultraviolet renormalon in the parameter A [30]. Again, the sum of all perturbative
and non-perturbative terms is unambiguous.

Our second example involves the matching factor �A for a 
avour-changing axial vector
current containing two heavy quarks. From the measurement of the recoil spectrum in the
semi-leptonic decay B ! D�` ��` one can extract the product jVcbj F(1), where F(1) denotes
the value of the hadronic form factor of the decay at the kinematic point of zero recoil [36].
This form factor is usually factorized in the form F(1) = �A (1 + �1=m2), where the quantity
�1=m2 represents non-perturbative power corrections, which from a conceptual point of view
cannot be distinguished from the long-distance contributions to �A. Hence, to separate short-
and long-distance e�ects properly one should again introduce a factorization scale, so that
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Figure 6: Short-distance contributions to �V (�) (solid line) and �A(�)
(dashed-dotted line) as a function of the factorization scale.

�A(�) contains all short-distance contributions, while �1=m2(�) accounts for long-distance
e�ects. The problem is that so far all calculations of �1=m2 were based on phenomenological
approaches that do not account for the �-dependence [40]{[42]. Therefore, we have to rely
on a reasonable guess for the factorization scale when we combine the most recent estimate
�1=m2 = �(5:5 � 2:5)% [36] with our short-distance calculation. From Fig. 6 we �nd that
0:955 < �A(�) < 0:975 for 0:8 GeV < � < 2 GeV, which we consider a conservative range of
values for the factorization scale. This yields

F(1) = �A(�) [1 + �1=m2(�)] = 0:91 � 0:03 ; (75)

which is 2% larger than the result obtained in Ref. [42], and 2% smaller than the value
quoted in Ref. [36]. The corresponding shift in the value of jVcbj is at the level of 10�3.

5 Correlator of light vector currents

As an important example not related to heavy quarks, we investigate the perturbative ex-
pansion of the correlator of two vector currents in the euclidean region (Q2 = �q2 > 0):

i

Z
d4x eiq�x h 0 jTfj�(x); j�(0)g j 0 i = (q�q� � q2g��)�(Q2) ; (76)

where j� = �q 
�q. For simplicity we shall consider massless quarks. The momentum transfer
Q2 provides the large mass scale. The derivative of �(Q2) with respect to Q2 is ultraviolet
convergent. As usual, we de�ne the D-function

D(Q2) = 4�2Q2 d�(Q
2)

dQ2
= 1 + SD(Q

2) : (77)

In the large-�0 limit, the Borel transform of the perturbative series for SD(Q2) is well known
[27, 43]:

bSD(u) = 32CF

2 � u

1X
k=2

(�1)k k
[k2 � (1 � u)2]2
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= 3CF

�
1 +

�
23

6
� 4�(3)

�
u+

�
9 � 6�(3)

�
u2 +O(u3)

�
: (78)

To obtain the corresponding distribution function we start from the �rst relation in (20) and
set u0 = 1. This gives

bwD(� ) =
8CF

�

1X
k=2

(�1)k d

dk

1

k2 � 1

1Z
�1

dr eir ln �
�
1 + ir

r2 + k2
� 1

1� ir

�
: (79)

The integral can be performed closing the integration contour at in�nity; however, it is
necessary to distinguish the cases ln � > 0 and ln � < 0. We �nd

bwD(� ) = 8CF

��
7

4
� ln �

�
� + (1 + � )

h
L2(�� ) + ln � ln(1 + � )

i�
; � < 1 ;

bwD(� ) = 8CF

�
1 + ln � +

�
3

4
+
1

2
ln �

�
1

�

+ (1 + � )
h
L2(���1)� ln � ln(1 + ��1)

i�
; � > 1 ; (80)

where L2(x) = � R x0 dy

y
ln(1 � y) is the dilogarithm function. The distribution function and

its �rst three derivatives are continuous at � = 1, but higher derivatives are not. The
asymptotic behaviour for � ! 0 is given by

bwD(� ) = 6CF � +O(� 2) ; (81)

corresponding to the infrared renormalon pole at u = 2 in the Borel transform in (78). The
location of this renormalon is consistent with the structure of the OPE for �(Q2), in which
non-perturbative corrections appear �rst1 at order 1=(Q2)2. This will be discussed in more
detail below. For large values of � the distribution function behaves like ln �=� 2, so that the
integral over the distribution function is ultraviolet convergent.

Using the above result, one can compute

N =
3

4
CF = 1 ;

hln � i = 4�(3) � 23

6
' 0:975 ;

hln2� i = 18 � 12�(3) ' 3:575 : (82)

The resulting values for the BLM scale and for the parameters �� , � and �BLM are shown
in Table 7 for both a small and a large value of Q2. A graphical representation of the
distribution function is given in Fig. 7.

For completeness we also discuss the resummation for the correlator �(Q2) itself. To
obtain it, we integrate (77) and use the fact that SD(Q2) depends on Q2 only through the
running coupling constant to �nd

4�2
h
�(Q2)��(Q2

0)
i
res

= ln
Q2

Q2
0

+
1

2�

1Z
0

d� bwD(� )

�s(�eCQ2)Z
�s(�eCQ2

0
)

d�s
�s

�(�s)
; (83)

1The question whether there is an infrared renormalon at u = 1 in real QCD (beyond the large-�0
approximation) is, however, not completely settled [26, 44].
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Table 7: Parameters obtained from the distribution function corresponding to the
D-function. We use Q2

1 = 2 GeV2 and Q2
2 = (20 GeV)2.

�VBLM �MS
BLM �s(�2BLM) �� � �BLM

D(Q2
1) 1:628

q
Q2

1 0:708
q
Q2

1 0.40 1.620 2.625 0.22

D(Q2
2) 1:628

q
Q2

2 0:708
q
Q2

2 0.17 1.620 2.625 0.03
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Figure 7: Distribution function for theD-function. The long arrow shows
the BLM scale. The short arrows indicate the factorization point � =
�2=Q2 for Q2

1 = 2 GeV2 (right) and Q2
2 = (20 GeV)2 (left).

where �(�s) = d�s(�2)=d ln � is the �-function, and Q2
0 is some arbitrary reference scale,

which serves to subtract the ultraviolet divergence of �(Q2). To obtain the distribution
function for �(Q2) it is su�cient to use the one-loop �-function,

�(�s) = ��0

2�
�2
s ; (84)

which leads to

4�2
h
�(Q2)��(Q2

0)
i
res

= ln
Q2

Q2
0

� 1

�0

1Z
0

d� bwD(� ) ln
�s(�e

CQ2)

�s(�eCQ2
0)
: (85)

Using an integration by parts we can bring this into the standard form of the distribution
function representation:

4�2
h
�(Q2)��(Q2

0)
i
res

= ln
Q2

Q2
0

+

1Z
0

d� bw�(� )

(
�s(�eCQ2)

4�
� �s(�eCQ2

0)

4�

)
; (86)
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Table 8: Various approximations for the perturbative contribution to theD-function.
As previously Q2

1 = 2 GeV2 and Q2
2 = (20 GeV)2.

S1�loop S2�loop SBLM SBLM� Sres �Sren

D(Q2
1) 0.107 0.125 0.128 0.156 0.164 0.006

D(Q2
2) 0.050 0.054 0.054 0.055 0.055 1:5� 10�7

Table 9: Comparison of the BLM scale with the scale �
�
corresponding to the full

resummation of the series. All values refer to the MS scheme.

�BLM=
p
Q2 �

�
=
p
Q2 �

�
=�BLM

D(Q2
1) 0.708 0.485 0.685

D(Q2
2) 0.708 0.621 0.878

with the distribution function

bw�(� ) = �1

�

�Z
0

d� 0 bwD(�
0) : (87)

Performing the integral gives

bw�(� ) = �4CF

�
1 � ln � +

�
5

2
� 3

2
ln �

�
�

+
(1 + � )2

�

h
L2(�� ) + ln � ln(1 + � )

i�
; � < 1 ;

bw�(� ) = �4CF

�
1 + ln � +

�
5

2
+
3

2
ln �

�
1

�

+
(1 + � )2

�

h
L2(���1)� ln � ln(1 + ��1)

i�
; � > 1 : (88)

The same result can also be obtained directly by starting from the Borel transform of the
correlator �(Q2). The asymptotic behaviour for small values of � is

bw�(� ) = �3CF � +O(� 2) ; (89)

corresponding again to an infrared renormalon at u = 2. For large values of � the distribution
function falls o� like 1=� , in accordance with the logarithmic ultraviolet divergence of the
unsubtracted correlator.

Let us now turn to the numerical analysis of our results. In Table 8 we show the various
approximations to the series SD(Q2), as de�ned in (69). We also quote values for the
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Table 10: Comparison of resummed \perturbative" series Sres with a model calcu-
lation of the full series including long-distance e�ects, Stot = Ssd(�) + Sld(�). We
use � = 1 GeV for the factorization scale.

Sres Stot Ssd(�) Sld(�) �(�) [MeV]

D(Q2
1) 0.164 0:146�0:009+0:005 0.118 0:028�0:009+0:005 581�56+23

D(Q2
2) 0.005 0.005 0.005 (1:6 � 0:2)� 10�6 713�31+16

renormalon ambiguity

�Dren = (�SD)ren =
8

�0

 
�2
V

Q2

!2

: (90)

It is apparent that the e�ect of the resummation is more pronounced in the case where Q2

is low. In this case there are signi�cant corrections to the BLM scheme. For the resummed
series Sres(Q2) we de�ne a scale �

�
so that

D(Q2) = 1 +
�s(�2

�

)

�
: (91)

This scale is compared to the BLM scale in Table 9. Finally, in Table 10 we evaluate the
short- and long-distance contributions to the D-function introducing a factorization scale
� = 1 GeV.

From the asymptotic behaviour of the distribution function in (81) we conclude that the
long-distance contribution to the perturbative series scales like

Sld(Q
2; �) =

�4(�)

(Q2)2
: (92)

It should be combined with non-perturbative contributions of the same magnitude. For the
euclidean correlator the OPE of the current product j�(x) j�(0) provides the framework for
a systematic incorporation of non-perturbative e�ects. At order 1=(Q2)2 these e�ects are
parametrized by the gluon condensate [45]. Hence, to this order we may write

D(Q2) = 1 + Ssd(Q
2; �) +

�4(�)

(Q2)2
+

2�

3(Q2)2
h�s G2i+ : : :

� 1 + Ssd(Q
2; �) +

2�

3(Q2)2
h�s G2i(�) + : : : ; (93)

where the last equation de�nes the scale-dependent condensate

h�sG2i(�) = h�sG2i+ 3

2�
�4(�) : (94)

For � = 1 GeV, we �nd from Table 10 that the \perturbative" contribution to the gluon
condensate is about 0:1 GeV4, which is of the same order of magnitude as the \genuine" gluon
condensate h�sG2i [45]. In many practical applications of the OPE, and in particular in the
phenomenology of the QCD sum rules, it is assumed that the \perturbative" contributions
to the vacuum condensates are much smaller than the \genuine" values of the condensates
and can be neglected [48]. Our result (94) provides a counter-example to this assertion.
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6 Conclusions

We have proposed an extension of the BLM scale-setting prescription, which resums certain
vacuum polarization insertions to all orders in perturbation theory. Our approach is equiva-
lent to performing one-loop calculations with a running coupling constant, thereby including
much of the non-trivial asymptotic behaviour of a perturbative series. The representation
of the resummed series as an integral over the running coupling constant with a distribution
function, as shown in (22), provides an intuitive picture of the distribution of virtualities in
a one-loop calculation. Much insight can be gained from the knowledge of the distribution
function. Its behaviour for large and small values of the scale parameter � is related in a di-
rect way to the ultraviolet and infrared properties of the series. Moments of the distribution
function determine the size of higher-order coe�cients.

By summing an in�nite set of diagrams our scheme reaches beyond perturbation the-
ory. In particular, it provides a clear separation of short- and long-distance e�ects. In any
�nite-order perturbative calculation non-perturbative e�ects are implicitly present due to
low-momentum contributions in Feynman diagrams, but are not visible as they are expo-
nentially small in the coupling constant. Yet perturbation theory \knows" about these con-
tributions in the form of infrared renormalon singularities, which make a perturbative series
non Borel summable. This means that attempts to resum the series will lead to unavoid-
able ambiguities. In our scheme the long-distance contributions can be explicitly separated,
since it is possible to introduce a hard momentum cuto� in a natural way. The size of the
long-distance contributions and their dependence on the large mass scale of the problem is
determined by the asymptotic behaviour of the distribution function in the infrared region.

Our approach o�ers several conceptual advantages over the BLM scheme. In particular,
it is additive and works in cases where the BLM scale is low. We have emphasized that
the value of the BLM scale alone cannot always be taken as an indicator of the size of
higher-order corrections or the rate of convergence of a perturbative series. Except in cases
where the distribution function is very narrow, it is better to deduce this information from
the distribution function, which properly takes into account the contribution from all mass
scales. For instance, the distribution function corresponding to the perturbative series for a
quantity which requires a subtraction of ultraviolet divergences typically gets contributions
of opposite sign, in which case cancellations may occur at one-loop order resulting in a low
value of the BLM scale.

The implementation of our proposal is based on techniques developed for the analysis
of renormalon chains. The distribution function can be obtained from the integral relations
in (20) by calculating �rst the Borel transform of a perturbative series with respect to the
coupling constant in the limit of large �0. We have demonstrated this for several one-
and two-scale problems in QCD. We �nd that in many cases the e�ect of the resummation
is quite signi�cant. As shown in Tables 4 and 8, the di�erence between the resummed
result and the two-loop approximation is comparable in magnitude to the di�erence between
the two-loop and the one-loop results, in accordance with the general behaviour expected
for asymptotic series. However, we stress that whereas the size of the one- and two-loop
coe�cients are renormalization-scheme dependent, the result of the resummation is scale-
and scheme-independent. We have associated a scale �

�
with the resummed series (using a

principle value prescription to regulate the Landau pole in the running coupling constant)
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and compared this scale to the BLM scale. Typically, the two scales can di�er by as much
as 50%, which is signi�cant in cases where the BLM scale is low.

Another aspect in our analysis was to investigate the relative size of short- and long-
distance contributions to the quantities of interest. Parametrically, long-distance e�ects are
exponentially small in the coupling constant; they have the form of power corrections. In
practice, however, they can still be sizeable in some cases. In heavy quark systems, for
instance, non-perturbative e�ects are often only suppressed by one power of the heavy quark
mass. Even for the bottom quark they can easily reach a level of 10%, thus being as large
as one-loop perturbative corrections. We have introduced a hard factorization scale � = 1
GeV and compared the short-distance contribution to a model calculation of long-distance
e�ects. We �nd that in some cases the long-distance e�ects are as big as the short-distance
ones. Then no reliable prediction can be obtained based on perturbation theory alone; it is
necessary to include non-perturbative e�ects.

In Ref. [19], we generalize our resummation procedure to the description of cross sections
and inclusive decay rates. In the calculation of radiative corrections both virtual and real
gluons will have to be considered, and only the sum of their contributions is infrared �nite
[46, 47]. Clearly, in such a situation one has to generalize the idea of performing a one-loop
calculation with a running coupling constant, which was the motivation for our resummation.
As a consequence, the \linear" form of the integral representation given in (22) will be
replaced by \non-linear" representations, in which instead of the coupling constant �s there
appears a function of the coupling constant.

While this paper was in writing, I became aware of a preprint by Beneke and Braun [49],
who propose the same generalization of the BLM scheme. Their approach is similar in spirit
to the one presented here, although the formalism di�ers in technical details. I am grateful
to the authors for making their results available to me prior to publication.
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