100 research outputs found

    Follow the streakers - in flight decision-making by honey bees

    Get PDF
    Contains fulltext : mmubn000001_184347718.pdf (publisher's version ) (Open Access)Promotores : J. Raaijmakers en E. Roskam169 p

    A fully coupled hydro-mechanical model for the modeling of coalbed methane recovery

    Get PDF
    Most coal seams hold important quantities of methane which is recognized as a valuable energy resource. Coal reservoir is considered not conventional because methane is held adsorbed on the coal surface. Coal is naturally fractured, it is a dual-porosity system made of matrix blocks and cleats (i.e fractures). In general, cleats are initially water saturated with the hydrostatic pressure maintaining the gas adsorbed in the coal matrix. Production of coalbed methane (CBM) first requires the mobilization of water in the cleats to reduce the reservoir pressure. Changes of coal properties during methane production are a critical issue in coalbed methane recovery. Indeed, any change of the cleat network will likely translate into modifications of the reservoir permeability. This work consists in the formulation of a consistent hydro-mechanical model for the CBM production modeling. Due to the particular structure of coal, the model is based on a dual-continuum approach to enrich the macroscale with microscale considerations. Shape factors are employed to take into account the geometry of the matrix blocks in the mass exchange between matrix and fractures. The hydro-mechanical model is fully coupled. For example, it captures the sorption-induced volumetric strain or the dependence of permeability on fracture aperture, which evolves with the stress state. The model is implemented in the finite element code Lagamine and is used for the modeling of one production well. A synthetic reservoir and then a real production case are considered. To date, attention has focused on a series of parametric analyses that can highlight the influence of the production scenario or key parameters related to the reservoir

    Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?

    Get PDF
    A wide variety of techniques have been developed to homogenize transport equations in multiscale and multiphase systems. This has yielded a rich and diverse field, but has also resulted in the emergence of isolated scientific communities and disconnected bodies of literature. Here, our goal is to bridge the gap between formal multiscale asymptotics and the volume averaging theory. We illustrate the methodologies via a simple example application describing a parabolic transport problem and, in so doing, compare their respective advantages/disadvantages from a practical point of view. This paper is also intended as a pedagogical guide and may be viewed as a tutorial for graduate students as we provide historical context, detail subtle points with great care, and reference many fundamental works

    Metallized Plastic Current Collectors

    Get PDF
    Metallized plastic current collectors are an innovation patented by the Soteria Battery Innovation Group with the promise of isolating active material involved in an internal short by vaporizing and isolating the short from the rest of the cell electrode jellyroll or stack. Partnering with NREL, UCL, Coulometrics, and Soteria, NASA is leading a research effort into demonstrating the merits and understanding the phenomena of this safety innovation using prototype 18650 cylindrical cells vs control cells with standard metal foil current collectors. Cells with and without the plastic collector, with and without the on-demand internal short circuit device, and with polymer or cellulose separators were made. Safety evaluations were done with driving cells into thermal runaway (TR) with thermal and nail penetration triggers while inside our TR calorimeter and with ultra high speed X-ray videography provided at Synchrotrons. Preliminary results suggests that the thermally unstable plastic current collector innovation has great promise for preventing TR or reducing the severity of the TR output

    Summarizing activity limitations in children with chronic illnesses living in the community: a measurement study of scales using supplemented interRAI items

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To test the validity and reliability of scales intended to measure activity limitations faced by children with chronic illnesses living in the community. The scales were based on information provided by caregivers to service program personnel almost exclusively trained as social workers. The items used to measure activity limitations were interRAI items supplemented so that they were more applicable to activity limitations in children with chronic illnesses. In addition, these analyses may shed light on the possibility of gathering functional information that can span the life course as well as spanning different care settings.</p> <p>Methods</p> <p>Analyses included testing the internal consistency, predictive, concurrent, discriminant and construct validity of two activity limitation scales. The scales were developed using assessment data gathered in the United States of America (USA) from over 2,700 assessments of children aged 4 to 20 receiving Medicaid Early and Periodic Screening, Diagnostic and Treatment (EPSDT) services, specifically Personal Care Services to assist children in overcoming activity limitations. The Medicaid program in the USA pays for health care services provided to children in low-income households. Data were collected in a single, large state in the southwestern USA in late 2008 and early 2009. A similar sample of children was assessed in 2010, and the analyses were replicated using this sample.</p> <p>Results</p> <p>The two scales exhibited excellent internal consistency. Evidence on the concurrent, predictive, discriminant, and construct validity of the proposed scales was strong. Quite importantly, scale scores were not correlated with (confounded with) a child's developmental stage or age. The results for these scales and items were consistent across the two independent samples.</p> <p>Conclusions</p> <p>Unpaid caregivers, usually parents, can provide assessors lacking either medical or nursing training with reliable and valid information on the activity limitations of children. One can summarize these data in scales that are both internally consistent and valid. Researchers and clinicians can use supplemented interRAI items to provide guidance for professionals and programs serving children, as well as older persons. This research emphasizes the importance of developing medical information systems that allow one to integrate information not only across care settings but also across an individual's life course.</p

    Synapse Clusters Are Preferentially Formed by Synapses with Large Recycling Pool Sizes

    Get PDF
    Synapses are distributed heterogeneously in neural networks. The relationship between the spatial arrangement of synapses and an individual synapse's structural and functional features remains to be elucidated. Here, we examined the influence of the number of adjacent synapses on individual synaptic recycling pool sizes. When measuring the discharge of the styryl dye FM1–43 from electrically stimulated synapses in rat hippocampal tissue cultures, a strong positive correlation between the number of neighbouring synapses and recycling vesicle pool sizes was observed. Accordingly, vesicle-rich synapses were found to preferentially reside next to neighbours with large recycling pool sizes. Although these synapses with large recycling pool sizes were rare, they were densely arranged and thus exhibited a high amount of release per volume. To consolidate these findings, functional terminals were marked by live-cell antibody staining with anti-synaptotagmin-1-cypHer or overexpression of synaptopHluorin. Analysis of synapse distributions in these systems confirmed the results obtained with FM 1–43. Our findings support the idea that clustering of synapses with large recycling pool sizes is a distinct developmental feature of newly formed neural networks and may contribute to functional plasticity

    Nanotools for Neuroscience and Brain Activity Mapping

    Get PDF
    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe
    • 

    corecore