50 research outputs found

    Towards novelty-driven recommender systems

    Get PDF
    Abstract We get recommendations about everything and in a pervasive way. Recommender systems act like compasses for our journey in complex conceptual spaces and we more and more rely on recommendations to ground most of our decisions. Despite their extraordinary efficiency and reliability, recommender systems are far from being flawless. They display instead serious drawbacks that might seriously reduce our open-mindedness and our capacity of experiencing diversity and possibly conflicting views. In this paper, we carefully investigate the very foundations of recommendation algorithms in order to identify the determinants of what could be the next generation of recommender systems. We postulate that it is possible to overcome the limitations of current recommender systems, by getting inspiration from the way in which people seek for novelties and give value to new experiences. From this perspective, the notion of adjacent possible seems a relevant one to redesign recommender systems in a way that better aligns with the natural inclination of human beings towards new and pleasant experiences. We claim that this new generation of recommenders could help in overcoming the pitfalls of current technologies, namely the tendency towards a lack of diversity, polarization, the emergence of echo-chambers and misinformation

    Complex delay dynamics on railway networks: from universal laws to realistic modelling

    Full text link
    Railways are a key infrastructure for any modern country. The reliability and resilience of this peculiar transportation system may be challenged by different shocks such as disruptions, strikes and adverse weather conditions. These events compromise the correct functioning of the system and trigger the spreading of delays into the railway network on a daily basis. Despite their importance, a general theoretical understanding of the underlying causes of these disruptions is still lacking. In this work, we analyse the Italian and German railway networks by leveraging on the train schedules and actual delay data retrieved during the year 2015. We use {these} data to infer simple statistical laws ruling the emergence of localized delays in different areas of the network and we model the spreading of these delays throughout the network by exploiting a framework inspired by epidemic spreading models. Our model offers a fast and easy tool for the preliminary assessment of the {effectiveness of} traffic handling policies, and of the railway {network} criticalities.Comment: 32 pages (with appendix), 28 Figures (with appendix), 2 Table

    Novel investigation methods in Computational Social Dynamics and Complex Systems

    Get PDF
    In this thesis the evolution of the techno-social systems analysis methods will be reported, through the explanation of the various research experience directly faced. The first case presented is a research based on data mining of a dataset of words association named Human Brain Cloud: validation will be faced and, also through a non-trivial modeling, a better understanding of language properties will be presented. Then, a real complex system experiment will be introduced: the WideNoise experiment in the context of the EveryAware european project. The project and the experiment course will be illustrated and data analysis will be displayed. Then the Experimental Tribe platform for social computation will be introduced . It has been conceived to help researchers in the implementation of web experiments, and aims also to catalyze the cumulative growth of experimental methodologies and the standardization of tools cited above. In the last part, three other research experience which already took place on the Experimental Tribe platform will be discussed in detail, from the design of the experiment to the analysis of the results and, eventually, to the modeling of the systems involved. The experiments are: CityRace, about the measurement of human traffic-facing strategies; laPENSOcosì, aiming to unveil the political opinion structure; AirProbe, implemented again in the EveryAware project framework, which consisted in monitoring air quality opinion shift of a community informed about local air pollution. At the end, the evolution of the technosocial systems investigation methods shall emerge together with the opportunities and the threats offered by this new scientific path

    Complex structures and semantics in free word association

    No full text
    International audienceWe investigate the directed and weighted complex network of free word associations in which players write a word in response to another word given as input. We analyze in details two large datasets resulting from two very different experiments: On the one hand the massive multiplayer web-based Word Association Game known as Human Brain Cloud, and on the other hand the South Florida Free Association Norms experiment. In both cases, the networks of associations exhibit quite robust properties like the small world property, a slight assortativity and a strong asymmetry between in-degree and out-degree distributions. A particularly interesting result concerns the existence of a characteristic scale for the word association process, arguably related to specific conceptual contexts for each word. After mapping, the Human Brain Cloud network onto the WordNet semantics network, we point out the basic cognitive mechanisms underlying word associations when they are represented as paths in an underlying semantic network. We derive in particular an expression describing the growth of the HBC graph and we highlight the existence of a characteristic scale for the word association process

    Exploitation and exploration in text evolution. Quantifying planning and translation flows during writing

    Full text link
    Writing is a complex process at the center of much of modern human activity. Despite it appears to be a linear process, writing conceals many highly non-linear processes. Previous research has focused on three phases of writing: planning, translation and transcription, and revision. While research has shown these are non-linear, they are often treated linearly when measured. Here, we introduce measures to detect and quantify subcycles of planning (exploration) and translation (exploitation) during the writing process. We apply these to a novel dataset that recorded the creation of a text in all its phases, from early attempts to the finishing touches on a final version. This dataset comes from a series of writing workshops in which, through innovative versioning software, we were able to record all the steps in the construction of a text. More than 60 junior researchers in science wrote a scientific essay intended for a general readership. We recorded each essay as a writing cloud, defined as a complex topological structure capturing the history of the essay itself. Through this unique dataset of writing clouds, we expose a representation of the writing process that quantifies its complexity and the writer's efforts throughout the draft and through time. Interestingly, this representation highlights the phases of "translation flow", where authors improve existing ideas, and exploration, where creative deviations appear as the writer returns to the planning phase. These turning points between translation and exploration become rarer as the writing process progresses and the author approaches the final version. Our results and the new measures introduced have the potential to foster the discussion about the non-linear nature of writing and support the development of tools that can support more creative and impactful writing processes

    From Trust to Disagreement: disentangling the interplay of Misinformation and Polarisation in the News Ecosystem

    Full text link
    The increasing pervasiveness of fruitless disagreement poses a considerable risk to social cohesion and constructive public discourse. While polarised discussions can exhibit significant distrust in the news, it is still largely unclear whether disagreement is somehow linked to misinformation. In this work, we exploit the results of `Cartesio', an online experiment to rate the trustworthiness of Italian news articles annotated for reliability by expert evaluators. We developed a metric for disagreement that allows for correct comparisons between news with different mean trust values. Our findings indicate that, though misinformation receives lower trust ratings than accurate information, it does not appear to be more controversial. Additionally, we examined the relationship between these findings and Facebook user engagement with news articles. Our results show that disagreement correlates with an increased likelihood of commenting, probably linked to inconclusive and long discussions. The emerging scenario is one in which fighting disinformation seems ineffective in countering polarisation. Disagreement focuses more on the divergence of opinions, trust, and their effects on social cohesion. This study offers a foundation for unsupervised news item analysis independent of expert annotation. Incorporating similar principles into the design of news distribution platforms and social media systems can enhance online interactions and foster the development of a less divisive news ecosystem

    XTribe: a web-based social computation platform

    Get PDF
    In the last few years the Web has progressively acquired the status of an infrastructure for social computation that allows researchers to coordinate the cognitive abilities of human agents in on-line communities so to steer the collective user activity towards predefined goals. This general trend is also triggering the adoption of web-games as a very interesting laboratory to run experiments in the social sciences and whenever the contribution of human beings is crucially required for research purposes. Nowadays, while the number of on-line users has been steadily growing, there is still a need of systematization in the approach to the web as a laboratory. In this paper we present Experimental Tribe (XTribe in short), a novel general purpose web-based platform for web-gaming and social computation. Ready to use and already operational, XTribe aims at drastically reducing the effort required to develop and run web experiments. XTribe has been designed to speed up the implementation of those general aspects of web experiments that are independent of the specific experiment content. For example, XTribe takes care of user management by handling their registration and profiles and in case of multi-player games, it provides the necessary user grouping functionalities. XTribe also provides communication facilities to easily achieve both bidirectional and asynchronous communication. From a practical point of view, researchers are left with the only task of designing and implementing the game interface and logic of their experiment, on which they maintain full control. Moreover, XTribe acts as a repository of different scientific experiments, thus realizing a sort of showcase that stimulates users' curiosity, enhances their participation, and helps researchers in recruiting volunteers.Comment: 11 pages, 2 figures, 1 table, 2013 Third International Conference on Cloud and Green Computing (CGC), Sept. 30 2013-Oct. 2 2013, Karlsruhe, German

    Participatory Patterns in an International Air Quality Monitoring Initiative

    Get PDF
    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.Comment: 17 pages, 6 figures, 1 supplementary fil
    corecore