13 research outputs found

    Prehospital Management of Traumatic Brain Injury across Europe: A CENTER-TBI Study

    Get PDF
    Background Prehospital care for traumatic brain injury (TBI) is important to prevent secondary brain injury. We aim to compare prehospital care systems within Europe and investigate the association of system characteristics with the stability of patients at hospital arrival. Methods We studied TBI patients who were transported to CENTER-TBI centers, a pan-European, prospective TBI cohort study, by emergency medical services between 2014 and 2017. The association of demographic factors, injury severity, situational factors, and interventions associated with on-scene time was assessed using linear regression. We used mixed effects models to investigate the case mix adjusted variation between countries in prehospital times and interventions. The case mix adjusted impact of on-scene time and interventions on hypoxia (oxygen saturation Results Among 3878 patients, the greatest driver of longer on-scene time was intubation (+8.3 min, 95% CI: 5.6-11.1). Secondary referral was associated with shorter on-scene time (-5.0 min 95% CI: -6.2- -3.8). Between countries, there was a large variation in response (range: 12-25 min), on-scene (range: 16-36 min) and travel time (range: 15-32 min) and in prehospital interventions. These variations were not explained by patient factors such as conscious level or severity of injury (expected OR between countries: 1.8 for intubation, 1.8 for IV fluids, 2.0 for helicopter). On-scene time was not associated with the regional EMS policy (p= 0.58). Hypotension and/or hypoxia were seen in 180 (6%) and 97 (3%) patients in the overall cohort and in 13% and 7% of patients with severe TBI (GCS Discussion Hypoxia and hypotension continue to occur in patients who suffer a TBI, and remain relatively common in severe TBI. Substantial variation in prehospital care exists for patients after TBI in Europe, which is only partially explained by patient factors.</div

    Post-Concussion Symptoms in Complicated vs. Uncomplicated Mild Traumatic Brain Injury Patients at Three and Six Months Post-Injury: Results from the CENTER-TBI Study

    Get PDF
    The aim of this study was to assess the occurrence of post-concussion symptoms and post-concussion syndrome (PCS) in a large cohort of patients after complicated and uncomplicated mild traumatic brain injury (mTBI) at three and six months post-injury. Patients were included through the prospective cohort study: Collaborative European NeuroTrauma Effectiveness Research (CENTER-TBI). Patients enrolled with mTBI (Glasgow Coma Scale 13–15) were further differentiated into complicated and uncomplicated mTBI based on the presence or absence of computed tomography abnormalities, respectively. The Rivermead Post-Concussion Symptoms Questionnaire (RPQ) assessed post-concussion symptoms and PCS according to the mapped ICD-10 classification method. The occurrence of post-concussion symptoms and syndrome at both time points was calculated. Chi square tests were used to test for differences between and within groups. Logistic regression was performed to analyse the association between complicated versus uncomplicated mTBI and the prevalence of PCS. Patients after complicated mTBI reported slightly more post-concussion symptoms compared to those after uncomplicated mTBI. A higher percentage of patients after complicated mTBI were classified as having PCS at three (complicated: 46% vs. uncomplicated: 35%) and six months (complicated: 43% vs. uncomplicated 34%). After adjusting for baseline covariates, the effect of complicated versus uncomplicated mTBI at three months appeared minimal: odds ratio 1.25 (95% confidence interval: 0.95–1.66). Although patients after complicated mTBI report slightly more post-concussion symptoms and show higher PCS rates compared to those after uncomplicated mTBI at three and six months, complicated mTBI was only found a weak indicator for these problems.</p

    Blood biomarkers on admission in acute traumatic brain injury: Relations to severity, CT findings and care path in the CENTER-TBI study

    Get PDF
    BackgroundSerum biomarkers may inform and improve care in traumatic brain injury (TBI). We aimed to correlate serum biomarkers with clinical severity, care path and imaging abnormalities in TBI, and explore their incremental value over clinical characteristics in predicting computed tomographic (CT) abnormalities.MethodsWe analyzed six serum biomarkers (S100B, NSE, GFAP, UCH-L1, NFL and t-tau) obtained FindingsAll biomarkers scaled with clinical severity and care path (ER only, ward admission, or ICU), and with presence of CT abnormalities. GFAP achieved the highest discrimination for predicting CT abnormalities (AUC 0•89 [95%CI: 0•87–0•90]), with a 99% likelihood of better discriminating CT-positive patients than clinical characteristics used in contemporary decision rules. In patients with mild TBI, GFAP also showed incremental diagnostic value: discrimination increased from 0•84 [95%CI: 0•83–0•86] to 0•89 [95%CI: 0•87–0•90] when GFAP was included. Results were consistent across strata, and injury severity. Combinations of biomarkers did not improve discrimination compared to GFAP alone.InterpretationCurrently available biomarkers reflect injury severity, and serum GFAP, measured within 24 h after injury, outperforms clinical characteristics in predicting CT abnormalities. Our results support the further development of serum GFAP assays towards implementation in clinical practice, for which robust clinical assay platforms are required.FundingCENTER-TBI study was supported by the European Union 7th Framework program (EC grant 602150).</p

    Primary versus early secondary referral to a specialized neurotrauma center in patients with moderate/severe traumatic brain injury: a CENTER TBI study.

    Get PDF
    BackgroundPrehospital care for patients with traumatic brain injury (TBI) varies with some emergency medical systems recommending direct transport of patients with moderate to severe TBI to hospitals with specialist neurotrauma care (SNCs). The aim of this study is to assess variation in levels of early secondary referral within European SNCs and to compare the outcomes of directly admitted and secondarily transferred patients.MethodsPatients with moderate and severe TBI (Glasgow Coma Scale ResultsA total of 1347 moderate/severe TBI patients from 53 SNCs in 18 European countries were included. Of these 1347 patients, 195 (14.5%) were admitted after early secondary referral. Secondarily referred moderate/severe TBI patients presented more often with a CT abnormality: mass lesion (52% vs. 34%), midline shift (54% vs. 36%) and acute subdural hematoma (77% vs. 65%). After adjusting for case-mix, there was a large European variation in early secondary referral, with a median OR of 1.69 between countries. Early secondary referral was not associated with functional outcome (adjusted OR 1.07, 95% CI 0.78-1.69), nor with survival at discharge (1.05, 0.58-1.90).ConclusionsAcross Europe, substantial practice variation exists in the proportion of secondarily referred TBI patients at SNCs that is not explained by case mix. Within SNCs early secondary referral does not seem to impact functional outcome and survival after stabilisation in a non-specialised hospital. Future research should identify which patients with TBI truly benefit from direct transportation

    Tracheal intubation in traumatic brain injury: a multicentre prospective observational study

    Get PDF
    Background We aimed to study the associations between pre- and in-hospital tracheal intubation and outcomes in traumatic brain injury (TBI), and whether the association varied according to injury severity. Methods Data from the international prospective pan-European cohort study, Collaborative European NeuroTrauma Effectiveness Research for TBI (CENTER-TBI), were used (n=4509). For prehospital intubation, we excluded self-presenters. For in-hospital intubation, patients whose tracheas were intubated on-scene were excluded. The association between intubation and outcome was analysed with ordinal regression with adjustment for the International Mission for Prognosis and Analysis of Clinical Trials in TBI variables and extracranial injury. We assessed whether the effect of intubation varied by injury severity by testing the added value of an interaction term with likelihood ratio tests. Results In the prehospital analysis, 890/3736 (24%) patients had their tracheas intubated at scene. In the in-hospital analysis, 460/2930 (16%) patients had their tracheas intubated in the emergency department. There was no adjusted overall effect on functional outcome of prehospital intubation (odds ratio=1.01; 95% confidence interval, 0.79–1.28; P=0.96), and the adjusted overall effect of in-hospital intubation was not significant (odds ratio=0.86; 95% confidence interval, 0.65–1.13; P=0.28). However, prehospital intubation was associated with better functional outcome in patients with higher thorax and abdominal Abbreviated Injury Scale scores (P=0.009 and P=0.02, respectively), whereas in-hospital intubation was associated with better outcome in patients with lower Glasgow Coma Scale scores (P=0.01): in-hospital intubation was associated with better functional outcome in patients with Glasgow Coma Scale scores of 10 or lower. Conclusion The benefits and harms of tracheal intubation should be carefully evaluated in patients with TBI to optimise benefit. This study suggests that extracranial injury should influence the decision in the prehospital setting, and level of consciousness in the in-hospital setting. Clinical trial registration NCT02210221

    Biblioteka Narodowa a krajowa siec biblioteczna

    Get PDF
    Objective We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations

    Tracheal intubation in traumatic brain injury: a multicentre prospective observational study

    No full text
    Background We aimed to study the associations between pre- and in-hospital tracheal intubation and outcomes in traumatic brain injury (TBI), and whether the association varied according to injury severity. Methods Data from the international prospective pan-European cohort study, Collaborative European NeuroTrauma Effectiveness Research for TBI (CENTER-TBI), were used (n=4509). For prehospital intubation, we excluded self-presenters. For in-hospital intubation, patients whose tracheas were intubated on-scene were excluded. The association between intubation and outcome was analysed with ordinal regression with adjustment for the International Mission for Prognosis and Analysis of Clinical Trials in TBI variables and extracranial injury. We assessed whether the effect of intubation varied by injury severity by testing the added value of an interaction term with likelihood ratio tests. Results In the prehospital analysis, 890/3736 (24%) patients had their tracheas intubated at scene. In the in-hospital analysis, 460/2930 (16%) patients had their tracheas intubated in the emergency department. There was no adjusted overall effect on functional outcome of prehospital intubation (odds ratio=1.01; 95% confidence interval, 0.79–1.28; P=0.96), and the adjusted overall effect of in-hospital intubation was not significant (odds ratio=0.86; 95% confidence interval, 0.65–1.13; P=0.28). However, prehospital intubation was associated with better functional outcome in patients with higher thorax and abdominal Abbreviated Injury Scale scores (P=0.009 and P=0.02, respectively), whereas in-hospital intubation was associated with better outcome in patients with lower Glasgow Coma Scale scores (P=0.01): in-hospital intubation was associated with better functional outcome in patients with Glasgow Coma Scale scores of 10 or lower. Conclusion The benefits and harms of tracheal intubation should be carefully evaluated in patients with TBI to optimise benefit. This study suggests that extracranial injury should influence the decision in the prehospital setting, and level of consciousness in the in-hospital setting. Clinical trial registration NCT02210221

    Post-Concussion Symptoms in Complicated vs. Uncomplicated Mild Traumatic Brain Injury Patients at Three and Six Months Post-Injury: Results from the CENTER-TBI Study

    Get PDF
    Abstract The aim of this study was to assess the occurrence of post-concussion symptoms and post-concussion syndrome (PCS) in a large cohort of patients after complicated and uncomplicated mild traumatic brain injury (mTBI) at three and six months post-injury. Patients were included through the prospective cohort study: Collaborative European NeuroTrauma Effectiveness Research (CENTER-TBI). Patients enrolled with mTBI (Glasgow Coma Scale 13-15) were further differentiated into complicated and uncomplicated mTBI based on the presence or absence of computed tomography abnormalities, respectively. The Rivermead Post-Concussion Symptoms Questionnaire (RPQ) assessed post-concussion symptoms and PCS according to the mapped ICD-10 classification method. The occurrence of post-concussion symptoms and syndrome at both time points was calculated. Chi square tests were used to test for differences between and within groups. Logistic regression was performed to analyse the association between complicated versus uncomplicated mTBI and the prevalence of PCS. Patients after complicated mTBI reported slightly more post-concussion symptoms compared to those after uncomplicated mTBI. A higher percentage of patients after complicated mTBI were classified as having PCS at three (complicated: 46% vs. uncomplicated: 35%) and six months (complicated: 43% vs. uncomplicated 34%). After adjusting for baseline covariates, the effect of complicated versus uncomplicated mTBI at three months appeared minimal: odds ratio 1.25 (95% confidence interval: 0.95-1.66). Although patients after complicated mTBI report slightly more post-concussion symptoms and show higher PCS rates compared to those after uncomplicated mTBI at three and six months, complicated mTBI was only found a weak indicator for these problems. KEYWORDS: complicated mild traumatic brain injury; post-concussion symptoms; post-concussion syndrome; traumatic brain injur
    corecore