227 research outputs found

    The impressions of industrial psychologists of their proficiency as coaches

    Get PDF
    Orientation: Coaching’s expansion is driven by its impact on job performance and wellbeing through positive reinforcement and goal achievement. Working as coaches for individuals, teams, and organisations, industrial psychologists often report feeling inadequately prepared for their coaching roles. Research purpose: The objective of this study was to explore industrial psychologists functioning as coaches, and, their training and development needs related to coaching in the workplace. Motivation for the study: Coaching is driven by its benefits for job performance and wellbeing, highlighting a challenge where many industrial psychologists, frequently acting as coaches, feel unprepared. Research approach, design and method: A qualitative research approach with an interpretivism paradigm was employed in this study. The participants, industrial psychologists and interns (N = 17) were approached using snowball sampling. The data was captured with qualitative surveys and analysed using thematic analysis. Main findings: The results showed that some participants felt confident since they experienced certainty of coaching psychology theories and the role of self-awareness in shaping their coaching methods. Some participants experienced less confidence in their coaching abilities and highlighted the need for supervision from a mentor in sound coaching practices. The participants reported a need for further development in skills such as emotional competence, and theoretical and technological knowledge and practice management. Practical/managerial implications: Coaching interventions by industrial psychologists can enhance employee strengths, boosting organisational returns and promoting a triple-bottom-line. Contribution/value-add: An industrial psychologist committed to coaching development can significantly boost both personal and organisational growth

    Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy

    Full text link
    Scanning tunneling microscopy (STM) gives us the opportunity to map the surface of functionalized carbon nanotubes in an energy resolved manner and with atomic precision. But this potential is largely untapped, mainly due to sample stability issues which inhibit reliable measurements. Here we present a simple and straightforward solution that makes away with this difficulty, by incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a few layer graphene - nanotube composite. This enabled us to measure energy resolved tunneling conductance maps on the nanotubes, which shed light on the level of doping, charge transfer between tube and functional groups and the dependence of defect creation or functionalization on crystallographic orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene, STM, CITS, ST

    A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex

    Get PDF
    Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.We thank Michael Hines for helping with synapse model implementation in NEURON; Mariana Vargas-Caballero for sharing NMDAR data; Veronica Egger for sharing in vitro data and for clarifications on the analysis methods; Jesper Sjöström for sharing in vitro data, helpful discussions, and feedback on the manuscript; Ralf Schneggenburger for helpful discussions and clarifications on the NMDAR calcium current model; Fabien Delalondre for helpful discussions; Francesco Casalegno and Taylor Newton for helpful discussion on model fitting; Daniel Keller for helpful discussions on the biophysics of synaptic plasticity; Natali Barros-Zulaica for helpful discussions on MVR modeling and generalization; Srikanth Ramaswamy, Michael Reimann and Max Nolte for feedback on the manuscript; Wulfram Gerstner and Guillaume Bellec for helpful discussions on synaptic plasticity modeling. This study was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne, from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology. E.B.M. received additional support from the CHU Sainte-Justine Research Center (CHUSJRC), the Institute for Data Valorization (IVADO), Fonds de Recherche du Québec–Santé (FRQS), the Canada CIFAR AI Chairs Program, the Quebec Institute for Artificial Intelligence (Mila), and Google. R.B.P. and J.DF. received support from the Spanish “Ministerio de Ciencia e Innovación” (grant PGC2018-094307-B-I00). M.D. and I.S. were supported by a grant from the ETH domain for the Blue Brain Project, the Gatsby Charitable Foundation, and the Drahi Family Foundation

    Adaptive and Phase Selective Spike Timing Dependent Plasticity in Synaptically Coupled Neuronal Oscillators

    Get PDF
    We consider and analyze the influence of spike-timing dependent plasticity (STDP) on homeostatic states in synaptically coupled neuronal oscillators. In contrast to conventional models of STDP in which spike-timing affects weights of synaptic connections, we consider a model of STDP in which the time lags between pre- and/or post-synaptic spikes change internal state of pre- and/or post-synaptic neurons respectively. The analysis reveals that STDP processes of this type, modeled by a single ordinary differential equation, may ensure efficient, yet coarse, phase-locking of spikes in the system to a given reference phase. Precision of the phase locking, i.e. the amplitude of relative phase deviations from the reference, depends on the values of natural frequencies of oscillators and, additionally, on parameters of the STDP law. These deviations can be optimized by appropriate tuning of gains (i.e. sensitivity to spike-timing mismatches) of the STDP mechanism. However, as we demonstrate, such deviations can not be made arbitrarily small neither by mere tuning of STDP gains nor by adjusting synaptic weights. Thus if accurate phase-locking in the system is required then an additional tuning mechanism is generally needed. We found that adding a very simple adaptation dynamics in the form of slow fluctuations of the base line in the STDP mechanism enables accurate phase tuning in the system with arbitrary high precision. Adaptation operating at a slow time scale may be associated with extracellular matter such as matrix and glia. Thus the findings may suggest a possible role of the latter in regulating synaptic transmission in neuronal circuits

    Metabolism of halophilic archaea

    Get PDF
    In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature

    Nuclear receptor corepressors

    Get PDF
    The ability of NR LBDs to transfer repression function to a heterologous DNA binding domain, and the cross-squelching of repression by untethered LBDs, has suggested that repression is mediated by interactions with putative cellular corepressor proteins. The yeast-two hybrid screen for protein interactors has proven to be the key to the isolation and characterization of corepressors. This short review will focus on N-CoR and SMRT

    The granite‑hosted Variscan gold deposit from Santo António mine in the Iberian Massif (Penedono, NW Portugal): constraints from mineral chemistry, fuid inclusions, sulfur and noble gases isotopes

    Get PDF
    The study area is located in the Central Iberian Zone, a major tectonic unit of the Iberian Massif (Variscan belt). In this region the basement is composed of Cambrian-Ordovician sedimentary and minor volcanic rocks that underwent deformation and metamorphism during the Carboniferous. These metamorphic rocks host ca. 331–308 Ma granitic plutons emplaced during the D2 extensional and D3–D4 contractional deformation phases. The gold-bearing quartz veins from the Santo António mine (Penedono region) occur in granite formed at 310.1 ± 1.1 Ma and post-dated the peak of metamorphism. Gold–silver alloy is included in quartz, but mainly occurs in spaces between grains or micro-fractures within arsenopyrite of all three generations and less in pyrite. Late sulphides and sulphosalts were deposited along fractures mainly in arsenopyrite, and locally surrounding the gold–silver alloy grains. Ferberite, scheelite and stolzite replace arsenopyrite. The abundant aqueous carbonic fluids and the occurrence of a low-salinity fluid and their minimum possible entrapment temperature of 360–380 °C suggest that this gold-forming event began during the waning stages of the Variscan orogeny. The mean δ34S values of arsenopyrite and pyrite are − 4.7‰ and − 3.8‰, respectively. He–Ar–Ne isotopic data suggest a crustal origin. The ascent of the granite magma has provided the heat for remobilization of gold, other metals and metalloids from the metamorphic rocks. This gold-arsenopyrite deposit has thus similar characteristics as other selected gold-arsenopyrite deposits from the Iberian Massif, but it contains tungstates.El área de estudio está ubicada en la Zona Centroibérica, una importante unidad tectónica del Macizo Ibérico (cinturón varisco). En esta región el basamento está compuesto por rocas sedimentarias y volcánicas del Cámbrico-Ordovícico tectonizadas y metamorfzadas durante el Carbonífero. Estas rocas metamórfcas sirven como caja de los plutones graníticos datados en torno a 331–308 Ma y que fueron emplazados durante la fase de deformación extensional D2 y las fases de deformación contraccional D3 y D4. Las venas de cuarzo ricas en oro de la mina de Santo António (región de Penedono) que aparecen en un granito datado a los 310.1 ± 1.1 Ma son posteriores al pico metamórfco regional. La aleación de oro y plata se incluye en el cuarzo, pero se produce principalmente en los espacios entre granos o micro-fracturas dentro de arsenopirita de las tres generaciones y menos en pirita. Los sulfuros y sulfuros tardíos se depositaron a lo largo de las fracturas principalmente en arsenopirita, y alrededor de los granos de aleación de oro y plata. Ferberita, scheelita y la estolzita sustituyen a la arsenopirita. Los abundantes líquidos acuosos carbónicos y la presencia de un fuido de baja salinidad y su posible temperatura de atrapamiento mínima en torno de 360-380 ºC sugieren que este evento de formación de oro comenzó durante las etapas fnales de la orogenia varisca. Los valores medios de S de arsenopirita y pirita son − 4.7 ‰ y − 3.8 ‰, respectivamente. Los datos isotópicos de He–Ar–Ne sugieren que en el origen de los fuidos mineralizados participa la corteza continental. El ascenso del magma granítico ha provisto el calor para la movilización del oro, otros metales y metaloides desde las rocas metamórfcas. Este depósito de oroarsenopirita tiene así características similares a otros yaciamientos con arsenopirita y oro del Macizo Ibérico, pero sin embargo contienen tungstates.This research was financially supported by Fundação para a Ciência e Tecnologia through the projects GOLDGranites, Orogenesis, Long-term strain/stress and Deposition of ore metals—PTDC/GEO-GEO/2446/2012: COMPETE: FCOMP-01-0124-FEDER-029192 and UID/GEO/04035/2013

    Metabolic Engineering of Cofactor F420 Production in Mycobacterium smegmatis

    Get PDF
    Cofactor F420 is a unique electron carrier in a number of microorganisms including Archaea and Mycobacteria. It has been shown that F420 has a direct and important role in archaeal energy metabolism whereas the role of F420 in mycobacterial metabolism has only begun to be uncovered in the last few years. It has been suggested that cofactor F420 has a role in the pathogenesis of M. tuberculosis, the causative agent of tuberculosis. In the absence of a commercial source for F420, M. smegmatis has previously been used to provide this cofactor for studies of the F420-dependent proteins from mycobacterial species. Three proteins have been shown to be involved in the F420 biosynthesis in Mycobacteria and three other proteins have been demonstrated to be involved in F420 metabolism. Here we report the over-expression of all of these proteins in M. smegmatis and testing of their importance for F420 production. The results indicate that co–expression of the F420 biosynthetic proteins can give rise to a much higher F420 production level. This was achieved by designing and preparing a new T7 promoter–based co-expression shuttle vector. A combination of co–expression of the F420 biosynthetic proteins and fine-tuning of the culture media has enabled us to achieve F420 production levels of up to 10 times higher compared with the wild type M. smegmatis strain. The high levels of the F420 produced in this study provide a suitable source of this cofactor for studies of F420-dependent proteins from other microorganisms and for possible biotechnological applications

    A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition

    Get PDF
    Memories are believed to be represented in the synaptic pathways of vastly interconnected networks of neurons. The plasticity of synapses, that is, their strengthening and weakening depending on neuronal activity, is believed to be the basis of learning and establishing memories. An increasing number of studies indicate that endocannabinoids have a widespread action on brain function through modulation of synap–tic transmission and plasticity. Recent experimental studies have characterised the role of endocannabinoids in mediating both short- and long-term synaptic plasticity in various brain regions including the hippocampus, a brain region strongly associated with cognitive functions, such as learning and memory. Here, we present a biophysically plausible model of cannabinoid retrograde signalling at the synaptic level and investigate how this signalling mediates depolarisation induced suppression of inhibition (DSI), a prominent form of shortterm synaptic depression in inhibitory transmission in hippocampus. The model successfully captures many of the key characteristics of DSI in the hippocampus, as observed experimentally, with a minimal yet sufficient mathematical description of the major signalling molecules and cascades involved. More specifically, this model serves as a framework to test hypotheses on the factors determining the variability of DSI and investigate under which conditions it can be evoked. The model reveals the frequency and duration bands in which the post-synaptic cell can be sufficiently stimulated to elicit DSI. Moreover, the model provides key insights on how the state of the inhibitory cell modulates DSI according to its firing rate and relative timing to the post-synaptic activation. Thus, it provides concrete suggestions to further investigate experimentally how DSI modulates and is modulated by neuronal activity in the brain. Importantly, this model serves as a stepping stone for future deciphering of the role of endocannabinoids in synaptic transmission as a feedback mechanism both at synaptic and network level
    corecore