146 research outputs found

    The effect of an infra-acetabular screw for anatomically shaped three-dimensional plate or standard plate designs in acetabulum fractures: a biomechanical analysis

    Get PDF
    Background Various plate shapes and implant configurations are used for stabilization of acetabulum fractures via anterior approaches. Little is known about the biomechanical stability of a two-dimensionally shaped “conventional” plate (“J-Plate”—JP) in comparison to three-dimensionally shaped plate configurations (3DP). In addition, the augmentary effect of an infra-acetabular lag-screw (IACS) fixation for anterior column and posterior hemi-transverse acetabulum fractures has not been clarified in comparison of JP and 3DP constructs. This study analyzed the difference between the biomechanical stability of JP compared to 3DP and the role of an IACS in a standardized acetabular fracture model in a single-leg stance loading configuration. Methods In an artificial bone substitute pelvis model (Synbone© Malans, Switzerland), a typical and standardized fracture pattern (anterior column and posterior hemi-transverse) was created with osteotomy jigs. After anatomic reduction the stabilization was performed using JP or 3DP. Eight pelvises per group were axially loaded in a single-leg stance model up to 400 N. After the load cycle, an additional infra-acetabular screw was placed and the measurement repeated. Fragment displacement was recorded by an optical tracking system (Optitrack Prime 13Âź, Corvallis, USA). Results In the pure placement, 3DP provided significantly superior stability when compared to JP. Augmentation of JP by IACS increased the stability significantly, up to the level of 3DP alone, whereas augmentation of the 3DP did not result in further increase of overall stability. Conclusion The anatomically shaped plate alone provides a superior biomechanical stability in fixation of an anterior column and posterior hemi-transverse fracture model. In a JP fixation the augmentation by IACS provides similar strength as the anatomically shaped 3DP. By use of the anatomically shaped 3DP the need of a clinically risky application of IACS might be avoidable

    Tangential View and Intraoperative Three-Dimensional Fluoroscopy for the Detection of Screw-Misplacements in Volar Plating of Distal Radius Fractures

    Get PDF
    Background: Volar locking plate fixation has become the gold standard in the treatment of unstable distal radius fractures. Juxta-articular screws should be placed as close as possible to the subchondral zone, in an optimized length to buttress the articular surface and address the contralateral cortical bone. On the other hand, intra-articular screw misplacements will promote osteoarthritis, while the penetration of the contralateral bone surface may result in tendon irritations and ruptures. The intraoperative control of fracture reduction and implant positioning is limited in the common postero-anterior and true lateral two-dimensional (2D)-fluoroscopic views. Therefore, additional 2D-fluoroscopic views in different projections and intraoperative three-dimensional (3D) fluoroscopy were recently reported. Nevertheless, their utility has issued controversies. Objectives: The following questions should be answered in this study; 1) Are the additional tangential view and the intraoperative 3D fluoroscopy useful in the clinical routine to detect persistent fracture dislocations and screw misplacements, to prevent revision surgery? 2) Which is the most dangerous plate hole for screw misplacement? Patients and Methods: A total of 48 patients (36 females and 13 males) with 49 unstable distal radius fractures (22 x 23 A; 2 x 23 B, and 25 x 23 C) were treated with a 2.4 mm variable angle LCP Two-Column volar distal radius plate (Synthes GmbH, Oberdorf, Switzerland) during a 10-month period. After final fixation, according to the manufactures' technique guide and control of implant placement in the two common perpendicular 2D-fluoroscopic images (postero-anterior and true lateral), an additional tangential view and intraoperative 3D fluoroscopic scan were performed to control the anatomic fracture reduction and screw placements. Intraoperative revision rates due to screw misplacements (intra-articular or overlength) were evaluated. Additionally, the number of surgeons, time and radiation-exposure, for each step of the operating procedure, were recorded. Results: In the standard 2D-fluoroscopic views (postero-anterior and true lateral projection), 22 screw misplacements of 232 inserted screws were not detected. Based on the additional tangential view, 12 screws were exchanged, followed by further 10 screws after performing the 3D fluoroscopic scan. The most lateral screw position had the highest risk for screw misplacement (accounting for 45.5% of all exchanged screws). The mean number of images for the tangential view was 3 ± 2.5 images. The mean surgical time was extended by 10.02 ± 3.82 minutes for the 3D fluoroscopic scan. An additional radiation exposure of 4.4 ± 4.5seconds, with a dose area product of 39.2 ± 14.5 cGy/cm2 were necessary for the tangential view and 54.4 ± 20.9 seconds with a dose area product of 2.1 ± 2.2 cGy/cm2, for the 3D fluoroscopic scan. Conclusions: We recommend the additional 2D-fluoroscopic tangential view for detection of screw misplacements caused by overlength, with penetration on the dorsal cortical surface of the distal radius, predominantly observed for the most lateral screw position. The use of intraoperative 3D fluoroscopy did not become accepted in our clinical routine, due to the technical demanding and time consuming procedure, with a limited image quality so far

    Effect of air movement on the thermal insulation of avian nests

    Get PDF
    Capsule: Air movement over a nest increases the rate of cooling within the nest cup but the walls provide good thermal insulation. Aims: This study compared nests of six bird species of the families Fringillidae and Motacillidae to investigate the insulative properties in still and moving air treatments. It was hypothesized that differences in nest size and moving air would differ between species and would have a significant effect on insulatory values of the nests. Methods: Nest dimensions were measured for a total of 35 nests from six species. Thermal properties of the nests were recorded using temperature loggers within nests placed in a wind tunnel under still and moving air conditions. Results: Insulatory values and internal nest cooling rates were significantly increased by moving air. There was no significant difference between species for the thermal properties of nests but nest mass correlated with greater insulatory values and a lower rate of cooling within the nest cup. Nest wall thickness had no significant effect on the thermal characteristics of the nests. Conclusion: The use of a constructed nest mitigated the effects of air movement but the differences between species reflected difference in nest mass rather than wall thickness

    Preparation of amino-substituted indenes and 1,4-dihydronaphthalenes using a one-pot multireaction approach: total synthesis of oxybenzo[c]phenanthridine alkaloids

    Get PDF
    Allylic trichloroacetimidates bearing a 2-vinyl or 2-allylaryl group have been designed as substrates for a one-pot, two-step multi-bond-forming process leading to the general preparation of aminoindenes and amino-substituted 1,4-dihydronaphthalenes. The synthetic utility of the privileged structures formed from this one-pot process was demonstrated with the total synthesis of four oxybenzo[c]phenanthridine alkaloids, oxychelerythrine, oxysanguinarine, oxynitidine, and oxyavicine. An intramolecular biaryl Heck coupling reaction, catalyzed using the Hermann–Beller palladacycle was used to effect the key step during the synthesis of the natural products

    PEDIA: prioritization of exome data by image analysis

    Get PDF
    Purpose Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. Methods Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. Results The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20–89% and the top 10 accuracy rate by more than 5–99% for the disease-causing gene. Conclusion Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis

    ReliabiliÀt der intraoperativen 3D Fluoroskopie bei Versorgung distaler Radiusfrakturen

    No full text
    • 

    corecore