79 research outputs found

    Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize

    Get PDF
    Background: Small RNA (sRNA) has been described as a regulator of gene expression. In order to understand the role of maize sRNA (Zea mays - hybrid UENF 506-8) during association with endophytic nitrogen-fixing bacteria, we analyzed the sRNA regulated by its association with two diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Results: Deep sequencing analysis was done with RNA extracted from plants inoculated with H. seropedicae, allowing the identification of miRNA and siRNA. A total of 25 conserved miRNA families and 15 novel miRNAs were identified. A dynamic regulation in response to inoculation was also observed. A hypothetical model involving copper-miRNA is proposed, emphasizing the fact that the up-regulation of miR397, miR398, miR408 and miR528, which is followed by inhibition of their targets, can facilitate association with diazotrophic bacteria. Similar expression patterns were observed in samples inoculated with A. brasilense. Moreover, novel miRNA and siRNA were classified in the Transposable Elements (TE) database, and an enrichment of siRNA aligned with TE was observed in the inoculated samples. In addition, an increase in 24-nt siRNA mapping to genes was observed, which was correlated with an increase in methylation of the coding regions and a subsequent reduction in transcription. Conclusion: Our results show that maize has RNA-based silencing mechanisms that can trigger specific responses when plants interact with beneficial endophytic diazotrophic bacteria. Our findings suggest important roles for sRNA regulation in maize, and probably in other plants, during association with diazotrophic bacteria, emphasizing the up-regulation of Cu-miRNA

    Differential sRNA Regulation in Leaves and Roots of Sugarcane under Water Depletion

    Get PDF
    Plants have developed multiple regulatory mechanisms to respond and adapt to stress. Drought stress is one of the major constraints to agricultural productivity worldwide and recent reports have highlighted the importance of plant sRNA in the response and adaptation to water availability. In order to increase our understanding of the roles of sRNA in response to water depletion, cultivars of sugarcane were submitted to treatment of ceasing drip irrigation for 24 hours. Deep sequencing analysis was carried out to identify the sRNA regulated in leaves and roots of sugarcane cultivars with different drought sensitivities. The pool of sRNA selected allowed the analysis of different sRNA classes (miRNA and siRNA). Twenty-eight and 36 families of conserved miRNA were identified in leaf and root libraries, respectively. Dynamic regulation of miRNA was observed and the expression profiles of eight miRNA were verified in leaf samples from three biological replicates by stem-loop qRT-PCR assay using the cultivars: SP90-1638 - sensitive cultivar- and; SP83-2847 and SP83-5073 - tolerant cultivars. Altered miRNA regulation was correlated with changes in mRNA levels of specific targets. Two leaf libraries from individual sugarcane cultivars with contrasting drought-tolerance properties were also analyzed. An enrichment of 22-nt sRNA species was observed in leaf libraries. 22-nt miRNA triggered siRNA production by cleavage of their targets in response to water depletion. A number of genes of the sRNA biogenesis pathway were down-regulated in tolerant genotypes and up-regulated in sensitive in response to water depletion treatment. Our analysis contributes to increase the knowledge on the roles of sRNA in sugarcane submitted to water depletion

    Genética de populações naturais.

    Get PDF
    Em um cenário de fragmentação de habitats, populações anteriormente contínuas são subdivididas em conjuntos de populações locais menores que podem estar isoladas em maior ou menor grau, dependendo da distribuição espacial dos fragmentos e do poder de dispersão inerente às espécies. Técnicas moleculares, além de permitirem a identificação dos efeitos da fragmentação sobre o complemento genético das populações remanescentes, também têm sido úteis em programas de manejo para conservação genética de populações

    The gut microbiome of exudivorous marmosets in the wild and captivity

    Get PDF
    Mammalian captive dietary specialists like folivores are prone to gastrointestinal distress and primate dietary specialists suffer the greatest gut microbiome diversity losses in captivity compared to the wild. Marmosets represent another group of dietary specialists, exudivores that eat plant exudates, but whose microbiome remains relatively less studied. The common occurrence of gastrointestinal distress in captive marmosets prompted us to study the Callithrix gut microbiome composition and predictive function through bacterial 16S ribosomal RNA V4 region sequencing. We sampled 59 wild and captive Callithrix across four species and their hybrids. Host environment had a stronger effect on the gut microbiome than host taxon. Wild Callithrix gut microbiomes were enriched for Bifidobacterium, which process host-indigestible carbohydrates. Captive marmoset guts were enriched for Enterobacteriaceae, a family containing pathogenic bacteria. While gut microbiome function was similar across marmosets, Enterobacteriaceae seem to carry out most functional activities in captive host guts. More diverse bacterial taxa seem to perform gut functions in wild marmosets, with Bifidobacterium being important for carbohydrate metabolism. Captive marmosets showed gut microbiome composition aspects seen in human gastrointestinal diseases. Thus, captivity may perturb the exudivore gut microbiome, which raises implications for captive exudivore welfare and calls for husbandry modifications

    Application of PE‐RADSeq to the study of genomic diversity and divergence of two Brazilian marmoset species (Callithrix jacchus and C. penicillata)

    No full text
    Callithrix jacchus and C. penicillata are among the smallest anthropoid primates, are highly specialized tree gougers, and largely occupy Brazil's most extreme, semi‐arid biomes. However, the underlying genomic factors that underpin the evolution of these species and their unique traits are under‐investigated. Additionally, exotic populations of these two species are widely established throughout Brazil and hybridize with threatened native congers. Thus, both genomic and conservation factors call for a better understanding of C. jacchus and C. penicillata evolution. Here, we applied PE‐RADseq to characterize genomic variation in these two species, using six C. jacchus and seven C. penicillata individuals. We identified an average of 7,463 and 5,180 SNPs/individual in C. penicillata and C. jacchus, respectively, and also found 1,395 variable sites that were represented in both species. C. penicillata showed overall higher levels of genetic diversity than C. jacchus at the variable sites present in both species. Additionally, among these variable sites, 106 showed relative interspecific divergence levels that were significantly higher than the genome‐wide average. We further compared relative and absolute divergence for C. penicillata and C. jacchus between RAD loci associated with the 106 significantly diverged variable sites and all other RAD loci present in both species. The former RAD loci set showed significantly elevated relative and absolute divergence measures in comparison to the latter set. This convergence suggests that C. jacchus and C. penicillata may have diverged under a scenario of gene flow under secondary contact. Here, we demonstrate that RADseq is an efficient method to simultaneously discover and genotype a large number of markers and validate the utility of RADseq for examining Callithrix evolutio

    Phase 1 Study of an Inactivated Vaccine against American Tegumentary Leishmaniasis in Normal Volunteers in Brazil

    No full text
    A Phase 1 double-blind placebo-controlled study was performed to evaluate a vaccine against American tegumentary leishmaniasis in 61 healthy male volunteers. Side effects and the immune response to the vaccine were evaluated, with 1- and 2- dose schemes, with intervals of 7 or 21 days, each dose containing 1440 mg of protein N antigen of a single strain of Leishmania amazonensis (PH 8) diluted in merthiolated saline (1:10,000). Merthiolated saline and an inert substance were used as placebos. No significant clinical alterations were found following the respective injections in the vaccinated individuals as compared to the placebos, except for local pain, which was associated significantly with injection of the vaccine. The laboratory alterations we observed bore no association with the clinical findings and were unimportant. We observed no differences between the groups with regard to seroconversion or the Montenegro skin test. However, the group that received a single dose of the vaccine and the one that received two doses with a 21-day interval displayed cutaneous induration significantly larger than in the control group, with 100%, 100%, and 66% conversion in the skin test, respectively. We concluded that the vaccine does not present any major side effect that would contraindicate its use in healthy individuals

    Differential sRNA Regulation in Leaves and Roots of Sugarcane under Water Depletion

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Plants have developed multiple regulatory mechanisms to respond and adapt to stress. Drought stress is one of the major constraints to agricultural productivity worldwide and recent reports have highlighted the importance of plant sRNA in the response and adaptation to water availability. In order to increase our understanding of the roles of sRNA in response to water depletion, cultivars of sugarcane were submitted to treatment of ceasing drip irrigation for 24 hours. Deep sequencing analysis was carried out to identify the sRNA regulated in leaves and roots of sugarcane cultivars with different drought sensitivities. The pool of sRNA selected allowed the analysis of different sRNA classes ( miRNA and siRNA). Twenty-eight and 36 families of conserved miRNA were identified in leaf and root libraries, respectively. Dynamic regulation of miRNA was observed and the expression profiles of eight miRNA were verified in leaf samples from three biological replicates by stem-loop qRT-PCR assay using the cultivars: SP90-1638-sensitive cultivar- and; SP83-2847 and SP83-5073 tolerant cultivars. Altered miRNA regulation was correlated with changes in mRNA levels of specific targets. Two leaf libraries from individual sugarcane cultivars with contrasting drought-tolerance properties were also analyzed. An enrichment of 22-nt sRNA species was observed in leaf libraries. 22-nt miRNA triggered siRNA production by cleavage of their targets in response to water depletion. A number of genes of the sRNA biogenesis pathway were down-regulated in tolerant genotypes and up-regulated in sensitive in response to water depletion treatment. Our analysis contributes to increase the knowledge on the roles of sRNA in sugarcane submitted to water depletion.94Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Instituto Nacional de Ciencia e Tecnologia em Fixacao Biologica de Nitrogenio (INCT)Financiadora de Estudos e Projetos (FINEP)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore