10 research outputs found
Generation of cardiomyocytes from human-induced pluripotent stem cells resembling atrial cells with ability to respond to adrenoceptor agonists
Atrial fibrillation (AF) is the most common chronic arrhythmia presenting a heavy disease burden. We report a new approach for generating cardiomyocytes (CMs) resembling atrial cells from human-induced pluripotent stem cells (hiPSCs) using a combination of Gremlin 2 and retinoic acid treatment. More than 40% of myocytes showed rod-shaped morphology, expression of CM proteins (including ryanodine receptor 2, α-actinin-2 and F-actin) and striated appearance, all of which were broadly similar to the characteristics of adult atrial myocytes (AMs). Isolated myocytes were electrically quiescent until stimulated to fire action potentials with an AM profile and an amplitude of approximately 100 mV, arising from a resting potential of approximately â70 mV. Single-cell RNA sequence analysis showed a high level of expression of several atrial-specific transcripts including NPPA, MYL7, HOXA3, SLN, KCNJ4, KCNJ5 and KCNA5. Amplitudes of calcium transients recorded from spontaneously beating cultures were increased by the stimulation of α-adrenoceptors (activated by phenylephrine and blocked by prazosin) or ÎČ-adrenoceptors (activated by isoproterenol and blocked by CGP20712A). Our new approach provides human AMs with mature characteristics from hiPSCs which will facilitate drug discovery by enabling the study of human atrial cell signalling pathways and AF. This article is part of the theme issue âThe heartbeat: its molecular basis and physiological mechanismsâ
A protocol for transverse cardiac slicing and optical mapping in murine heart
Thin living tissue slices have recently emerged as a new tissue model for cardiac electrophysiological research. Slices can be produced from human cardiac tissue, in addition to small and large mammalian hearts, representing a powerful in vitro model system for preclinical and translational heart research. In the present protocol, we describe a detailed mouse heart transverse slicing and optical imaging methodology. The use of this technology for high-throughput optical imaging allows study of electrophysiology of murine hearts in an organotypic pseudo two-dimensional model. The slices are cut at right angles to the long axis of the heart, permitting robust interrogation of transmembrane potential (Vm) and calcium transients (CaT) throughout the entire heart with exceptional regional precision. This approach enables the use of a series of slices prepared from the ventricles to measure Vm and CaT with high temporal and spatial resolution, allowing (i) comparison of successive slices which form a stack representing the original geometry of the heart; (ii) profiling of transmural and regional gradients in Vm and CaT in the ventricle; (iii) characterization of transmural and regional profiles of action potential and CaT alternans under stress (e.g., high frequency pacing or ÎČ-adrenergic stimulation) or pathological conditions (e.g., hypertrophy). Thus, the protocol described here provides a powerful platform for innovative research on electrical and calcium handling heterogeneity within the heart. It can be also combined with optogenetic technology to carry out optical stimulation; aiding studies of cellular Vm and CaT in a cell type specific manner
COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing
Background
Lateral flow device (LFD) viral antigen immunoassays have been developed around the world as diagnostic tests for SARS-CoV-2 infection. They have been proposed to deliver an infrastructure-light, cost-economical solution giving results within half an hour.
Methods
LFDs were initially reviewed by a Department of Health and Social Care team, part of the UK government, from which 64 were selected for further evaluation from 1st August to 15th December 2020. Standardised laboratory evaluations, and for those that met the published criteria, field testing in the Falcon-C19 research study and UK pilots were performed (UK COVID-19 testing centres, hospital, schools, armed forces).
Findings
4/64 LFDs so far have desirable performance characteristics (orient Gene, Deepblue, Abbott and Innova SARS-CoV-2 Antigen Rapid Qualitative Test). All these LFDs have a viral antigen detection of >90% at 100,000 RNA copies/ml. 8951 Innova LFD tests were performed with a kit failure rate of 5.6% (502/8951, 95% CI: 5.1â6.1), false positive rate of 0.32% (22/6954, 95% CI: 0.20â0.48). Viral antigen detection/sensitivity across the sampling cohort when performed by laboratory scientists was 78.8% (156/198, 95% CI 72.4â84.3).
Interpretation
Our results suggest LFDs have promising performance characteristics for mass population testing and can be used to identify infectious positive individuals. The Innova LFD shows good viral antigen detection/sensitivity with excellent specificity, although kit failure rates and the impact of training are potential issues. These results support the expanded evaluation of LFDs, and assessment of greater access to testing on COVID-19 transmission.
Funding
Department of Health and Social Care. University of Oxford. Public Health England Porton Down, Manchester University NHS Foundation Trust, National Institute of Health Research
Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study
Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk
Novel cardiac cell subpopulations: Pnmt-derived cardiomyocytes
Diversity among highly specialized cells underlies the fundamental biology of complex multi-cellular organisms. One of the essential scientific questions in cardiac biology has been to define subpopulations within the heart. The heart parenchyma comprises specialized cardiomyocytes (CMs). CMs have been canonically classified into a few phenotypically diverse subpopulations largely based on their function and anatomic localization. However, there is growing evidence that CM subpopulations are in fact numerous, with a diversity of genetic origin and putatively different roles in physiology and pathophysiology. In this chapter, we introduce a recently discovered CM subpopulation: phenylethanolamine-N-methyl transferase (Pnmt)-derived cardiomyocytes (PdCMs). We discuss: (i) canonical classifications of CM subpopulations; (ii) discovery of PdCMs; (iii) Pnmt and the role of catecholamines in the heart; similarities and dissimilarities of PdCMs and canonical CMs; and (iv) putative functions of PdCMs in both physiological and pathological states and future directions, such as in intra-cardiac adrenergic signalling
A protocol for dual calcium-voltage optical mapping in murine sinoatrial preparation with optogenetic pacing
Among the animal models for studying the molecular basis of atrial and sinoatrial node (SAN) biology and disease, the mouse is a widely used species due to its feasibility for genetic modifications in genes encoding ion channels or calcium handling and signaling proteins in the heart. It is therefore highly valuable to develop robust methodologies for studying SAN and atrial electrophysiological function in this species. Here, we describe a protocol for performing dual calcium-voltage optical mapping on mouse sinoatrial preparation (SAP), in combination with an optogenetic approach, for studying SAP membrane potential, intracellular Ca2+ transients, and pacemaker activity. The protocol includes the details for preparing the intact SAP, robust tissue dual-dye loading, light-programmed pacing, and high-resolution optical mapping. Our protocol provides an example of use of the combination of optogenetic and optical mapping techniques for investigating SAP membrane potential and intracellular Ca2+ transients and pacemaker activity with high temporal and spatial resolution in specific cardiac tissues. Thus, our protocol provides a useful tool for studying SAP physiology and pathophysiology in mice
Differential occupational risks to healthcare workers from SARS-CoV-2 observed during a prospective observational study
We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a UK teaching hospital using naso-/oro-pharyngeal PCR testing and immunoassays for IgG antibodies. 1128/10,034 (11.2%) staff had evidence of Covid-19 at some time. Using questionnaire data provided on potential risk-factors, staff with a confirmed household contact were at greatest risk (adjusted odds ratio [aOR] 4.82 [95%CI 3.45-6.72]). Higher rates of Covid-19 were seen in staff working in Covid-19-facing areas (22.6% vs. 8.6% elsewhere) (aOR 2.47 [1.99-3.08]). Controlling for Covid-19-facing status, risks were heterogenous across the hospital, with higher rates in acute medicine (1.52 [1.07-2.16]) and sporadic outbreaks in areas with few or no Covid-19 patients. Covid-19 intensive care unit staff were relatively protected (0.44 [0.28-0.69]), likely by a bundle of PPE-related measures. Positive results were more likely in Black (1.66 [1.25-2.21]) and Asian (1.51 [1.28-1.77]) staff, independent of role or working location, and in porters and cleaners (2.06 [1.34-3.15])
Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study
Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice
Safety and efficacy of intraperitoneal drain placement after emergency colorectal surgery. An international, prospective cohort study
Intraperitoneal drains are often placed during emergency colorectal surgery. However, there is a lack of evidence supporting their use. This study aimed to describe the efficacy and safety of intraperitoneal drain placement after emergency colorectal surgery. Method: COMPlicAted intra-abdominal collectionS after colorectal Surgery (COMPASS) is a prospective, international, cohort study into which consecutive adult patients undergoing emergency colorectal surgery were enrolled (from 3 February 2020 to 8 March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included rate and time-to-diagnosis of postoperative intraperitoneal collections, rate of surgical site infections (SSIs), time to discharge and 30-day major postoperative complications (Clavien-Dindo III-V). Multivariable logistic and Cox proportional hazards regressions were used to estimate the independent association of the outcomes with drain placement. Results: Some 725 patients (median age 68.0âyears; 349 [48.1%] women) from 22 countries were included. The drain insertion rate was 53.7% (389 patients). Following multivariable adjustment, drains were not significantly associated with reduced rates (odds ratio [OR] =â1.56, 95% CI: 0.48-5.02, pâ=â0.457) or earlier detection (hazard ratio [HR] =â1.07, 95% CI: 0.61-1.90, pâ=â0.805) of collections. Drains were not significantly associated with worse major postoperative complications (ORâ=â1.26, 95% CI: 0.67-2.36, pâ=â0.478), delayed hospital discharge (HRâ=â1.11, 95% CI: 0.91-1.36, pâ=â0.303) or increased risk of SSIs (ORâ=â1.61, 95% CI: 0.87-2.99, pâ=â0.128). Conclusion: This is the first study investigating placement of intraperitoneal drains following emergency colorectal surgery. The safety and clinical benefit of drains remain uncertain. Equipoise exists for randomized trials to define the safety and efficacy of drains in emergency colorectal surgery