33 research outputs found

    A model for the compressible, viscoelastic behavior of human amnion addressing tissue variability through a single parameter

    Get PDF
    A viscoelastic, compressible model is proposed to rationalize the recently reported response of human amnion in multiaxial relaxation and creep experiments. The theory includes two viscoelastic contributions responsible for the short- and long-term time- dependent response of the material. These two contributions can be related to physical processes: water flow through the tissue and dissipative characteristics of the collagen fibers, respectively. An accurate agreement of the model with the mean tension and kinematic response of amnion in uniaxial relaxation tests was achieved. By variation of a single linear factor that accounts for the variability among tissue samples, the model provides very sound predictions not only of the uniaxial relaxation but also of the uniaxial creep and strip-biaxial relaxation behavior of individual samples. This suggests that a wide range of viscoelastic behaviors due to patient-specific variations in tissue composition

    On the multiscale modeling of heart valve biomechanics in health and disease

    Full text link

    Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment

    Get PDF
    Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S. and elsewhere have consistently concluded that approximately 25-32% of this population suffers from a disorder characterized by symptoms that vary somewhat among individuals and include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and respiratory, gastrointestinal and dermatologic complaints. Gulf War illness (GWI) is the term used to describe this disorder. In addition, brain cancer occurs at increased rates in subgroups of GW veterans, as do neuropsychological and brain imaging abnormalities. Chemical exposures have become the focus of etiologic GWI research because nervous system symptoms are prominent and many neurotoxicants were present in theater, including organophosphates (OPs), carbamates, and other pesticides; sarin/cyclosarin nerve agents, and pyridostigmine bromide (PB) medications used as prophylaxis against chemical warfare attacks. Psychiatric etiologies have been ruled out. This paper reviews the recent literature on the health of 1991 GW veterans, focusing particularly on the central nervous system and on effects of toxicant exposures. In addition, it emphasizes research published since 2008, following on an exhaustive review that was published in that year that summarizes the prior literature (RACGWI, 2008). We conclude that exposure to pesticides and/or to PB are causally associated with GWI and the neurological dysfunction in GW veterans. Exposure to sarin and cyclosarin and to oil well fire emissions are also associated with neurologically based health effects, though their contribution to development of the disorder known as GWI is less clear. Gene-environment interactions are likely to have contributed to development of GWI in deployed veterans. The health consequences of chemical exposures in the GW and other conflicts have been called "toxic wounds" by veterans. This type of injury requires further study and concentrated treatment research efforts that may also benefit other occupational groups with similar exposure-related illnesses
    corecore