103 research outputs found

    Imprints of expansion onto the local anisotropy of solar wind turbulence

    Full text link
    We study the anisotropy of II-order structure functions defined in a frame attached to the local mean field in three-dimensional (3D) direct numerical simulations of magnetohydrodynamic turbulence, including or not the solar wind expansion. We simulate spacecraft flybys through the numerical domain by taking increments along the radial (wind) direction that forms an angle of 45o45^o with the ambient magnetic field. We find that only when expansion is taken into account, do the synthetic observations match the 3D anisotropy observed in the solar wind, including the change of anisotropy with scales. Our simulations also show that the anisotropy changes dramatically when considering increments oblique to the radial directions. Both results can be understood by noting that expansion reduces the radial component of the magnetic field at all scales, thus confining fluctuations in the plane perpendicular to the radial. Expansion is thus shown to affect not only the (global) spectral anisotropy, but also the local anisotropy of second-order structure functions by influencing the distribution of the local mean field, which enters this higher-order statistics.Comment: 5 pages, 5 figures, accepted in ApJ

    Alfv\'en-dynamo balance and magnetic excess in MHD turbulence

    Get PDF
    3D Magnetohydrodynamic (MHD) turbulent flows with initially magnetic and kinetic energies at equipartition spontaneously develop a magnetic excess (or residual energy), as well in numerical simulations and in the solar wind. Closure equations obtained in 1983 describe the residual spectrum as being produced by a dynamo source proportional to the total energy spectrum, balanced by a linear Alfv\'en damping term. A good agreement was found in 2005 with incompressible simulations; however, recent solar wind measurements disagree with these results. The previous dynamo-Alfv\'en theory is generalized to a family of models, leading to simple relations between residual and total energy spectra. We want to assess these models in detail against MHD simulations and solar wind data. The family of models is tested against compressible decaying MHD simulations with low Mach number, low cross-helicity, zero mean magnetic field, without or with expansion terms (EBM or expanding box model). A single dynamo-Alfv\'en model is found to describe correctly both solar wind scalings and compressible simulations without or with expansion. It is equivalent to the 1983-2005 closure equation but with critical balance of nonlinear turnover and linear Alfv\'en times, while the dynamo source term remains unchanged. The discrepancy with previous incompressible simulations is elucidated. The model predicts a linear relation between the spectral slopes of total and residual energies mR=−1/2+3/2mTm_R = -1/2 + 3/2 m_T. Examining the solar wind data as in \cite{2013ApJ...770..125C}, our relation is found to be valid whatever the cross-helicity, even better so at high cross-helicity, with the total energy slope varying from 1.71.7 to 1.551.55.Comment: 7 pages, 7 figures, accepted for publication in A&

    Three-dimensional Iroshnikov-Kraichnan turbulence in a mean magnetic field

    Full text link
    Forced, weak MHD turbulence with guide field is shown to adopt different regimes, depending on the magnetic excess of the large forced scales. When the magnetic excess is large enough, the classical perpendicular cascade with 5/35/3 scaling is obtained, while when equipartition is imposed, an isotropic 3/23/2 scaling appears in all directions with respect to the mean field (\cite{2010PhRvE..82b6406G} or GM10). We show here that the 3/23/2 scaling of the GM10 regime is not ruled by a small-scale cross-helicity cascade, and propose that it is a 3D extension of a perpendicular weak Iroshnikov-Kraichnan (IK) cascade. We analyze in detail the structure functions in real space and show that they closely follow the critical balance relation both in the local frame and the global frame: we show that there is no contradiction between this and the isotropic 3/23/2 scaling of the spectra. We propose a scenario explaining the spectral structure of the GM10 regime, that starts with a perpendicular weak IK cascade and extends to 3D by using quasi-resonant couplings. The quasi-resonance condition happens to reduce the energy flux in the same way as is done in the weak perpendicular cascade, so leading to a 3/23/2 scaling in all directions. We discuss the possible applications of these findings to solar wind turbulence.Comment: Major re-write of manuscrip

    Solar wind turbulent spectrum at plasma kinetic scales

    Full text link
    The description of the turbulent spectrum of magnetic fluctuations in the solar wind in the kinetic range of scales is not yet completely established. Here, we perform a statistical study of 100 spectra measured by the STAFF instrument on the Cluster mission, which allows to resolve turbulent fluctuations from ion scales down to a fraction of electron scales, i.e. from ∌102\sim 10^2 km to ∌300\sim 300 m. We show that for k⊄ρe∈[0.03,3]k_{\perp}\rho_e \in[0.03,3] (that corresponds approximately to the frequency in the spacecraft frame f∈[3,300]f\in [3,300] Hz), all the observed spectra can be described by a general law E(k⊄)∝k⊄−8/3exp⁥(−k⊄ρe)E(k_\perp)\propto k_\perp^{-8/3}\exp{(-k_\perp \rho_e)}, where k⊄k_{\perp} is the wave-vector component normal to the background magnetic field and ρe\rho_e the electron Larmor radius. This exponential tail found in the solar wind seems compatible with the Landau damping of magnetic fluctuations onto electrons.Comment: published in APJ, 15 of November 2012 (with reduced "Discussion" section

    Anisotropy of third-order structure functions in MHD turbulence

    Full text link
    The measure of the third-order structure function, Y, is employed in the solar wind to compute the cascade rate of turbulence. In the absence of a mean field B0=0, Y is expected to be isotropic (radial) and independent of the direction of increments, so its measure yields directly the cascade rate. For turbulence with mean field, as in the solar wind, Y is expected to become more two dimensional (2D), that is, to have larger perpendicular components, loosing the above simple symmetry. To get the cascade rate one should compute the flux of Y, which is not feasible with single-spacecraft data, thus measurements rely upon assumptions about the unknown symmetry. We use direct numerical simulations (DNS) of magneto-hydrodynamic (MHD) turbulence to characterize the anisotropy of Y. We find that for strong guide field B0=5 the degree of two-dimensionalization depends on the relative importance of shear and pseudo polarizations (the two components of an Alfv\'en mode in incompressible MHD). The anisotropy also shows up in the inertial range. The more Y is 2D, the more the inertial range extent differs along parallel and perpendicular directions. We finally test the two methods employed in observations and find that the so-obtained cascade rate may depend on the angle between B0 and the direction of increments. Both methods yield a vanishing cascade rate along the parallel direction, contrary to observations, suggesting a weaker anisotropy of solar wind turbulence compared to our DNS. This could be due to a weaker mean field and/or to solar wind expansion.Comment: Some text editing and typos corrected, 13 pages, 6 figures, to be published in Ap

    Spectral energy dynamics in magnetohydrodynamic turbulence

    Full text link
    Spectral direct numerical simulations of incompressible MHD turbulence at a resolution of up to 102431024^3 collocation points are presented for a statistically isotropic system as well as for a setup with an imposed strong mean magnetic field. The spectra of residual energy, EkR=∣EkM−EkK∣E_k^\mathrm{R}=|E_k^\mathrm{M}-E_k^\mathrm{K}|, and total energy, Ek=EkK+EkME_k=E^\mathrm{K}_k+E^\mathrm{M}_k, are observed to scale self-similarly in the inertial range as EkR∌k−7/3E_k^\mathrm{R}\sim k^{-7/3}, Ek∌k−5/3E_k\sim k^{-5/3} (isotropic case) and Ek⊄R∌k⊄−2E^\mathrm{R}_{k_\perp}\sim k_\perp^{-2}, Ek⊄∌k⊄−3/2E_{k_\perp}\sim k_\perp^{-3/2} (anisotropic case, perpendicular to the mean field direction). A model of dynamic equilibrium between kinetic and magnetic energy, based on the corresponding evolution equations of the eddy-damped quasi-normal Markovian (EDQNM) closure approximation, explains the findings. The assumed interplay of turbulent dynamo and Alfv\'en effect yields EkR∌kEk2E_k^\mathrm{R}\sim k E^2_k which is confirmed by the simulations.Comment: accepted for publication by PR

    Coupling the solar dynamo and the corona: wind properties, mass and momentum losses during an activity cycle

    Full text link
    We study the connections between the sun's convection zone and the evolution of the solar wind and corona. We let the magnetic fields generated by a 2.5D axisymmetric kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal isothermal MHD code (DIP). The computations cover an 11 year activity cycle. The solar wind's asymptotic velocity varies in latitude and in time in good agreement with the available observations. The magnetic polarity reversal happens at different paces at different coronal heights. Overall sun's mass loss rate, momentum flux and magnetic braking torque vary considerably throughout the cycle. This cyclic modulation is determined by the latitudinal distribution of the sources of open flux and solar wind and the geometry of the Alfv\'en surface. Wind sources and braking torque application zones also vary accordingly

    Statistical anisotropy of magnetohydrodynamic turbulence

    Full text link
    Direct numerical simulations of decaying and forced magnetohydrodynamic (MHD) turbulence without and with mean magnetic field are analyzed by higher-order two-point statistics. The turbulence exhibits statistical anisotropy with respect to the direction of the local magnetic field even in the case of global isotropy. A mean magnetic field reduces the parallel-field dynamics while in the perpendicular direction a gradual transition towards two-dimensional MHD turbulence is observed with k−3/2k^{-3/2} inertial-range scaling of the perpendicular energy spectrum. An intermittency model based on the Log-Poisson approach, ζp=p/g2+1−(1/g)p/g\zeta_p=p/g^2 +1 -(1/g)^{p/g}, is able to describe the observed structure function scalings.Comment: 4 pages, 3 figures. To appear in Phys.Rev.
    • 

    corecore