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ABSTRACT

Context. Three-dimensional magnetohydrodynamic (3D MHD) turbulent flows with initially magnetic and kinetic energies at equipar-
tition spontaneously develop a magnetic excess (or residual energy) in both numerical simulations and the solar wind. Closure equa-
tions obtained in 1983 describe the residual spectrum as resulting from a balance between a dynamo source proportional to the total
energy spectrum and a linear Alfvén damping term. A good agreement was found in 2005 with incompressible simulations; however,
recent solar wind measurements disagree with these results.
Aims. The previous dynamo-Alfvén theory is generalized to a family of models, leading to simple relations between residual and total
energy spectra. We want to assess these models in detail against MHD simulations and solar wind data.
Methods. We tested the family of models against compressible decaying MHD simulations with a low Mach number, low cross-
helicity, and zero-mean magnetic field with or without expansion terms (EBM; expanding box model).
Results. A single dynamo-Alfvén model is found to describe correctly both solar wind scalings and compressible simulations without
or with expansion. This model is equivalent to the 1983–2005 closure equation, but it incorporates the critical balance of nonlinear
turnover and linear Alfvén times, while the dynamo source term remains unchanged. We elucidate the discrepancy with previous
incompressible simulations. The model predicts a linear relation between the spectral slopes of total and residual energies mR =
−1/2 + 3/2mT. By examining previous solar wind data, our relation is found to be valid for any cross-helicity, and is even better at
high cross-helicity with the total energy slope varying from 1.7 to 1.55.
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1. Introduction

Three-dimensional magnetohydrodynamic (3D MHD) turbulent
flows with initial equipartition of magnetic (EM

k ) and kinetic
(EV

k ) spectral energy density spontaneously develop a magnetic
excess. In the solar wind, the magnetic excess in the k−5/3 scal-
ing range is largest in the cold, slow wind with no or small
mean field (e.g., Grappin et al. 1991; Bruno et al. 2007). Recent
measurements have revealed that when the relative cross-helicity
σc = 2 〈v · b〉 /

(〈
v2 + b2

〉)
is smaller than 0.6, the residual energy

ER
k = EM

k − EV
k adopts the scaling k−2 (Chen et al. 2013), while

the total energy ET
k = EM

k + EV
k scales as k−5/3.

The origin of the magnetic excess in the solar wind has
been attributed to different physical mechanisms: (i) rem-
nants of quasi-stationary solar magnetic structures (Bruno et al.
2007); (ii) formation and persistence of current sheets
(Matthaeus & Lamkin 1986); (iii) selective decay of ideal invari-
ants (Stribling & Matthaeus 1991); and (iv) fully developed tur-
bulence. In the latter case, which interests us here, the residual
energy spectrum results from the competition between the linear
damping of Alfvén waves by the local mean field, the Alfvén ef-
fect (Kraichnan 1965), and the magnetic stretching, which is the
source proportional to the total energy spectrum (Grappin et al.
1983; Müller & Grappin 2005, MG05). We call it the Alfvén-
dynamo scenario. The model, in its stationary version, allows us
to predict the residual energy spectrum, given the total energy

spectrum. In particular, it predicts that the slopes of total energy
(mT) and residual energy (mR) satisfy

mR = −1 + 2mT, (1)

which yields mR = 2 only if mT = 3/2; this is at variance with the
solar wind case, which shows on average mR ' 2 and mT ' 5/3.
The model discussed here is not a cascade theory: the magnetic
excess is not a inviscid invariant, it is assumed to be the passive
by-product of the two effects mention above. Hence, the validity
of our model is potentially more general than the validity of, for
example, the Kolmogorov regime (e.g., Lee et al. 2010).

The isotropic closure approximation (eddy-damped-quasi-
normal or edqnm) used to derive the dynamo-Alfvén equation
has been criticized. Indeed, the small-scale dynamics in MHD
turbulence should be dominated by motions perpendicular to the
large-scale magnetic field; this, in turn, should strongly reduce
the influence of the Alfvén effect, which is a basic part of the
theory (Biskamp 2003, end of Chap. 6). Several attempts have
been made since then to include anisotropy into the edqnm clo-
sure (Gogoberidze et al. 2012; Boldyrev et al. 2012); however in
the case of a strong cascade with no global mean field, these at-
tempts lead to the prediction ER

k = ET
k , at variance with our nu-

merical findings and also the solar wind as shown in this work.
Our aim here is (i) to investigate whether one can recover the

solar wind regime via numerical simulations of either standard
compressible 3D MHD equations or 3D expanding box model
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(EBM) equations, that is, compressible MHD including expan-
sion terms (Grappin et al. 1993; Grappin & Velli 1996); (ii) find
an appropriate framework for a Alfvén-dynamo scenario de-
scribing simulations and the solar wind that takes anisotropy into
account.

We consider the case with zero mean field and low cross-
helicity, and small Mach number. Although the solar wind is
rarely, strictly in a zero mean field configuration (brms/B0 ' 0.5
for a period range from 10 to 2 h, where B0 is the mean magnetic
field at the 10 h scale, e.g., Roberts 1989), the magnetic excess is
dominant close to the heliospheric current sheet where the mean
field is small, which is the configuration studied by Chen et al.
(2013).

To provide a diagnostic tool for our simulations, we first
generalize formally the Alfvén dynamo balance derived from
edqnm, by considering different simple expressions for the char-
acteristic times of the dynamo source and the Alfvén sink. These
return different scaling predictions for the residual energy spec-
trum, given the spectral slope for total energy, quantitative pre-
dictions for the relative levels of both spectra, and also relaxation
curves. We test these different models against our simulations.

We find that compressible MHD simulations, both standard
and with expansion (EBM), show a quasi-stationary regime cor-
responding to that found in the solar wind. This quasi-stationary
state is well described, qualitatively (scaling) and quantitatively
(amplitude) if we keep the dynamo source term as in the 1983
edqnm scenario, but change the Alfvén sink, taking the critical
balance between nonlinear coupling and linear propagation into
account. The relation between the residual and total energy spec-
tral slopes predicted by our theory applies not only to the zero
cross-helicity wind, but also to high-speed streams with relative
cross-helicity close to unity and shallower spectral slopes.

We show that incompressible MG05 simulations differ from
the compressible simulations studied here insofar as the scaling
law for the residual energy actually depends on the kind of spec-
trum used, whether reduced or isotropized. Such a dependence
is not observed in the compressible simulations considered here.

The plan is as follows. First we derive the family of Alfvén-
dynamo models relating the residual and total energy spectra.
Then we examine direct simulations of compressible MHD with
low Mach number, both with and without expansion terms in the
light of the different Alfvén-dynamo models. The last section is
a discussion.

2. Generalizing the Alfvén-dynamo model

The Alfvén dynamo model is obtained starting from the incom-
pressible MHD equations and using the edqnm spectral closure.
It leads to a closed system of equations relating the different
second-order moments of the system. The general form (with Ek
denoting either the kinetic, magnetic, or residual energy spec-
trum) is ∂tEk =

∫
dpdqkθEpEq. In the case of the residual en-

ergy, the integral may be separated into nonlocal and local contri-
butions, leading to a linear damping term and a nonlinear source,
respectively. This can be written as

∂tER
k = −θ/t0

A
2
ER

k + θ/t2
NLET

k , (2)

where the characteristic times t0
A and tNL are (the magnetic field

is expressed in units of Alfvén velocity)

t0
A = 1/(kb0) (3)

tNL = 1/(k(u2 + b2)1/2) ' (k3/2(ET
k )1/2)−1 (4)

and θ is the relaxation time of triple correlations (in principle θ =
t0
A, see below). The form of the source term is local, while some

authors (e.g., Alexakis et al. 2005) claim that kinetic-magnetic
exchange (other than the simple Alfvén effect) should show
important nonlocal contributions. However, (i) Aluie & Eyink
(2010) criticized the methodology of this work; (ii) a workable
nonlocal model would be very difficult to build, and as we show
here, a local formulation works well in predicting the relation
between total and residual energies.

We generalize the edqnm model by writing, instead of
Eq. (2),

∂tER
k = −ER

k /tD + ET
k /tdyn, (5)

where the two timescales, tD (damping time) and tdyn (dynamo
time) can be chosen independently one from another. This leads
to the equilibrium solution

ER
k /E

T
k = tD/tdyn. (6)

The edqnm model is described by Eq. (2) with θ = t0
A, and is

thus equivalent to Eq. (5) with tD = t0
A and tdyn = t2

NL/t
0
A, which

leads to ER
k /E

T
k = (t0

A/tNL)2.
Other expressions of the damping and dynamo times lead to

the general family of residual-total energy relations,

ER
k /E

T
k = (t0

A/tNL)α. (7)

This leads to explicit relations between residual and total energy
spectra after replacing the nonlinear time as a function of the
total energy spectrum, as in Eq. (4),

ER
k = b−α0 kα/2(ET

k )1+α/2. (8)

Also, the following relation holds between spectral slopes (ET
k ∝

k−mT , ER
k ∝ k−mR ):

mR = −α/2 + mT(1 + α/2). (9)

Different values of α can be obtained by using the following ex-
pressions of the damping and dynamo timescales in terms of the
basic timescales t0

A and tNL:

tD = tNL tdyn = tNL α = 0 (10)

tD = t0
A tdyn = tNL α = 1 (11)

tD = tNL tdyn = t2
NL/t

0
A α = 1 (12)

tD = t0
A tdyn = t2

NL/t
0
A α = 2. (13)

As a rule (except perhaps at the largest scales), one has t0
A <

tNL < t2
NL/t

0
A with the inequality becoming stronger at small

scales. The first scenario (α = 0, damping and dynamo
both based on the nonlinear time tNL) is the simplest of all
(Gogoberidze et al. 2012): it leads to an extreme regime with
ER

k = ET
k at all scales. This regime is far from both the solar

wind and numerical results.
The last scenario with fast damping and slow dynamo based

on the long diffusive time tdyn = t2
NL/t

0
A, is the edqnm prediction

studied in MG05; it leads to α = 2, hence to a fast decreasing
residual spectrum with slope mR = 7/3 when mT = 5/3.

The intermediate scenarios (fast damping and dynamo, and
slow damping and dynamo, respectively) both lead to α = 1, and
hence to mR = 2 when mT = 5/3: they are thus candidates for
the description of solar wind dynamics.
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Fig. 1. Run A (compressible MHD). a) Kinetic (solid line) and mag-
netic (dotted) rms amplitudes; b) kinetic (solid line) and magnetic (dot-
ted) Taylor wavenumbers vs. time.

3. Numerical results

In this section we consider two decaying compressible simu-
lations with zero mean field, low cross-helicity and resolution
5123: (i) 3D MHD (run A); (ii) 3D EBM (run B). In both cases,
the initial Mach number is small (and remains so), thus mini-
mizing compressible effects. Our main issue in this section is to
assess Eq. (7): are the numerical results for equilibrium residual
energy well described by one of the two algebraic models α = 1
or α = 2, and, accordingly, do the spectral scalings satisfy the
corresponding Eq. (9)?

3.1. Compressible turbulence

The first run (A) has random isotropic initial conditions with
urms = brms = 1, ∇.u = 0, equal magnetic and kinetic energies
with spectra confined to k ≤ 2. Initial relative cross-helicity is
0.17, density is unity, pressure is uniform with sound speed cs =
(5/3 P/ρ)1/2 ' 8, initial Mach number M0 = urms/cs ' 0.12. The
domain is a cube of size L0 = 2π.

The evolution of rms velocity (solid line) and magnetic (dot-
ted line) fluctuations versus time is shown in the left panel of
Fig. 1, during 12 nonlinear times 1/(k0urms(t = 0)). The Taylor
wavenumbers computed on the kinetic (solid) and magnetic (dot-
ted) energy spectrum are shown in the right panel. One sees that
the kinetic energy is transferred to magnetic energy in about two
nonlinear times, while small scales wait up to about six nonlin-
ear times to be fully excited, as indicated by the peaks of the
Taylor wavenumbers. The relative cross-helicity (not shown in
the figure) increases during the run from 0.17 to about 0.3.

We consider now reduced one-dimensional (1D) energy
spectra E(kx), which are defined from the 3D spectral energy
density E3 as E(kx) =

∫ ∫
dkydkzE3(kx, ky, kz) and the same for

reduced spectra versus ky or kz. For run A with no expansion and
no mean field, all directions should be equivalent; we thus use
for all quantities the average of the three reduced spectra, i.e.,

E(k) = (1/3)(E(kx) + E(ky) + E(kz)). (14)

To reveal the spectral slopes of the different reduced spectra,
we show in Fig. 2a the total, residual, magnetic, and kinetic ener-
gies averaged during the time interval 10 ≤ t ≤ 12 compensated
by the slopes k−5/3, k−2, k−5/3, k−3/2, respectively. The averages
are made on 209 outputs, after expressing (by interpolating on
a fixed grid) the spectra versus the ratio k/kd, where kd is the
wavenumber associated with a peak of the instantaneous spec-
trum of the current, namely of k2EM(k). Plateaus are seen to de-
velop in the range 0.1 ≤ k/kd ≤ 1, thus showing good agreement
with spectral slopes measured in the solar wind. The same set
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Fig. 2. Run A. Energy spectra averaged during time interval 10 ≤ t ≤
12. Wavenumbers are normalized by the dissipative wavenumber kd for
which k2EM(k) is maximum; see text. a) From top to bottom: total,
residual, magnetic, and kinetic energies, compensated resp. by k−5/3,
k−2, k−5/3, k−3/2. Spectra are arbitrarily shifted vertically. b) Normal-
ized residual energy eR

α (k): (i) (solid) normalized by the α = 1 model
(Eq. (7)); (ii) (dotted) normalized by the α = 2 model; (iii) (dashed) by
the α = 1 model with the nonlinear time given by the advection time
(see text).

of slopes has been found recently in the two-dimensional (2D)
hybrid simulations by Franci et al. (2015).

Figure 2b allows us to assess the Alfvén-dynamo scenario
by showing the residual spectra normalized by the α-model pre-
diction with successively α = 1 and α = 2. More precisely, one
shows

eR
α (k) = ER

k /(E
R
k )α, (15)

where (ER
k )α = (t0

A/tNL)αET
k is the equilibrium solution Eq. (7).

The solid curve shows the normalization by the α = 1 pre-
diction and the dotted curve indicates the normalization by the
α = 2 prediction. All spectra versus k/kd are again averaged
over the 209 spectra stored during the time interval 10 ≤ t ≤ 12.
One sees that in the inertial range 0.1 ≤ k/kd ≤ 1, only the
α = 1 normalization shows a plateau, indicating that the α = 1
scenario catches the basic physics, in agreement with the slopes
(mT,mR) = (5/3, 2) obtained for the total and residual spectra in
Fig. 2a.

A still better quantitative agreement can be obtained if we
use for the stretching time the advection time: tNL = 1/(ku) in-
stead of Eq. (4) (which allowed us to close the problem). This
gives a measured/predicted ratio closer to unity in the inertial
range, as shown by the dashed curve in Fig. 2b.

To give an idea of how the spectra evolve with time, we
show in Fig. 3 the evolution of spectral energy density at five
wavenumbers: k = 4, 8, 16, 32, for the four quantities: (a) total;
(b) residual; (c) residual energy normalized by α = 1 model; and
(d) residual energy normalized by α = 2 model. The total energy
is multiplied by k5/3 and the residual energy by k2. Total ener-
gies at k = 8, 16, 32 are seen to collapse at about t ≥ 7, revealing
the formation of the k−5/3 inertial range. At about the same time,
the collapse of residual energy curves reveal the formation of
the k−2 range. The modes 4 to 32, which are normalized by the
α = 1 model, also show in panel c a nice collapse toward a value
close to unity. In contrast, modes normalized by the α = 2 model
remain significantly scattered.

3.2. Turbulence with expansion

We now consider with run B the 3D MHD equations modified by
the expansion (EBM; Grappin et al. 1993). The EBM equations
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Fig. 3. Run A. Time variation of spectral energy density at specific
wavenumbers k = 4, 8, 16, 32, resp. solid, dotted, dashed, dot-dashed
lines. a) Total energy times k5/3 b) residual energy times k2; c) residual
energy eR

1 (k) normalized by α = 1 equilibrium; d) residual energy eR
2 (k)

normalized by α = 2 equilibrium (see Eq. (15)).

allow us to follow the evolution of a plasma volume embedded
in a uniform, given radial flow with speed U0 as in the solar
wind. The radial flow cannot be eliminated by a plain Galilean
transformation and forces the plasma volume to expand in di-
rections perpendicular to the radial. This leads to many gen-
uine effects specific to solar wind turbulence: (i) quadratic in-
variants are lost and replaced by first order invariants (as mass,
momentum, angular momentum, and magnetic flux); (ii) cascade
isotropy is lost, as the turbulent cascade is stronger in the radial
direction (Dong et al. 2014). The expansion itself already pro-
vides a large-scale source of magnetic excess, as it selectively
decreases only one component (the radial one) of the magnetic
field in Alfvén speed units and two components of the veloc-
ity field (e.g., Zhou & Matthaeus 1990; Oughton & Matthaeus
1995; Grappin et al. 1993; Dong et al. 2014).

We consider initially an isotropic 1/k large-scale spectrum
to mimic the large-scale fossil 1/ f spectrum observed in the
wind (Bruno & Carbone 2013). The Mach number is '0.1 as for
run A; kinetic velocity and magnetic fluctuations are at equipar-
tition, and ∇.u = 0. The wind expansion rate normalized to the
large-scale nonlinear time is initially ε =

U0L0

2πu0
rmsR0

= 2, where L0

is the initial size of the domain (with aspect ratio unity), and R0
the initial distance. This means that initially most of the spec-
tral range (that with k ≥ 2) has a nonlinear time shorter than the
local transit time te = R0/U0. This leaves room for an inertial
range to develop, together with specific spectral anisotropy that
is characteristic of turbulence with expansion (see Dong et al.
2014; Verdini & Grappin 2015). Evolution is followed from time
t = 0 up to t = 3.2 nonlinear times, corresponding to an helio-
centric distance increase of R/R0 = 1 + εt = 7.4 (also equal to
the increase of the aspect ratio of the domain). During this time,
relative cross-helicity remains smaller than 0.01.

Fig. 4. Run B. Turbulence with expansion and no mean field: spectra
vs. kR (radial wavenumber, i.e., in direction parallel to the mean ra-
dial flow) at t = 0.8, 1.2, ...3.2 nonlinear times (vertical arrows indicate
direction of time evolution). a) Total energy spectra compensated by
k−5/3; b) residual energy, compensated by k−2; c) residual energy eR

1 (k)
normalized by the α = 1 prediction; d) residual energy eR

2 (k) normalized
by the α = 2 prediction (see Eq. (15)).

As observational records by spacecrafts are made along the
radial direction, leading via the Taylor hypothesis to 1D reduced
spectra versus radial wavenumber, we present only such spec-
tra in Fig. 4, at times t = 0.8, 1.2... 3.2. Total energy spectra
are shown compensated by k−5/3 in panel a, residual spectra are
shown compensated by k−2 in panel b. One can thus see in panel
a the progressive steepening of the total energy spectrum (start-
ing from the initial 1/k spectrum) toward a k−5/3 range and in
panel b the formation of the k−2 range for the residual spectrum.
Panels c and d show residual spectra normalized by the α = 1
and α = 2 equilibrium spectra, respectively (Eq. (7)). The resid-
ual spectra are seen to converge toward the α = 1 model in the
inertial range, and much less so toward the α = 2 model.

Magnetic and kinetic spectra also exhibit (not shown) scal-
ings close to 5/3 and 3/2, respectively, but within a wavenumber
range that is shorter than for previous run A.

4. Discussion

4.1. The α = 1 model versus simulations and solar wind

Using both compressible MHD and EBM (i.e., compressible
MHD modified by expansion) simulations with moderate Mach
number, zero mean field, and low cross-helicity, we found that
the α = 1 equilibrium between residual and total energy relation
(Eq. (7)) holds with the spectra showing the slopes (mT,mR) =
(5/3, 2) specifically.

We found that in run A the quasi-stationary magnetic spec-
trum scales as k−5/3 and the kinetic spectrum scales as k−3/2;
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Fig. 5. Spectral slopes for total and residual energies: models vs. ob-
servations. a) Observations (symbols) as taken from Fig. 5b from
Chen et al. (2013) vs. cross-helicity σc; solid line: residual slope as pre-
dicted from observed total energy slope using Eq. (16) (α = 1 model).
b) Scatter plot (−mT,−mR) from observations (squares); straight lines:
relation mR(mT) given in Eq. (9) with α = 0 (dashed line), α = 1 (solid),
and α = 2 (dotted).

these scalings are observed in the solar wind (Podesta et al.
2007; Salem et al. 2009). This is the first report of this
set of slopes in simulations with low cross-correlation in
3D MHD simulations. Previously, the four spectral slopes were
found in 2D hybrid simulations by Franci et al. (2015) with the
same conditions (no mean field, weak compressibility, and low
cross-helicity). Also, incompressible 3D reduced MHD simula-
tions were reported with this set of slopes, but only when forcing
with a large cross-helicity (Boldyrev et al. 2011). With no cross-
helicity, the latter authors report mR = 2 together with mT = 3/2,
which is the prediction of the α = 2 model: this model describes
as well the incompressible MG05 simulations. This is discussed
again below.

The scaling relation associated with the α = 1 model
(Eq. (9)),

mR = −1/2 + (3/2)mT, (16)

applies well to the average slopes found in the solar wind:
mT ' 1.7, mR ' 2 in the low cross-helicity wind. However,
by examining the data published in Chen et al. (2013), in partic-
ular their Fig. 5b, we find that the agreement is actually more
universal than that. Equation (16) actually also works for cross-
helicities σc larger than 0.6, for which the total energy spectrum
becomes flatter. This is seen in Fig. 5a, in which we reproduce
the measured slopes for total and residual energies versus σc as
in Fig. 5b of Chen et al. (2013). The solid line gives the predicted
residual slope, replacing the total energy slope by its measured
value in Eq. (16). The agreement with the measured mR is seen
to increase in the right part of the figure for large cross-helicity,
which happens to be the region where error bars are the smallest
(see original figure).

Figure 5b summarizes our findings by showing a scatter plot
of measured slopes (residual slope versus total energy slope) and
comparing these findings with the predictions of the three mod-
els for mR(mT): α = 0 (dashed line), 1 (solid), and 2 (dotted).
This allows us to see how far from the true situation in the wind
are the isotropic edqnm model (α = 2) on the one hand, and the
simple α = 0 model.

This indicates that the Alfvén-dynamo theory is able to de-
scribe a large interval of turbulent parameters; this theory works
in the balanced and imbalanced regime as well with no mean
field and average mean field.
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Fig. 6. Run A1: return of residual energy to equilibrium after increasing
the magnetic energy by a factor four in run A at time t = 10. One-
dimensional reduced spectra and time evolution of modes k = 8, 16, 32
(solid, dotted, and dashed lines, respectively): a) total energy, compen-
sated by k−5/3; b) residual energy normalized by the α = 1 solution
evaluated at time t = 12; c) residual energy and the analytical solution
with short damping time (thin lines, cf. Eq. (18) with tD = t0

A); and
d) same as c) but with tD = tNL for the analytical solution.

4.2. Identifying separately source and damping

To gain more insight into the dynamical process that leads to the
α = 1 equilibrium and, in particular, to discriminate between the
two possible choices of characteristic times (Eq. (11) or Eq. (12))
that might rule the Alfvén-dynamo equation (Eq. (5)), we now
consider the response of the system without expansion (run A)
to perturbations of the equilibrium residual energy in two suc-
cessive experiments.

In both experiments, we restart run A at time t = 10 after
perturbing the residual energy spectrum, and follow the evolu-
tion up to t = 12. In the first experiment (run A1), we increase
the residual energy by increasing the magnetic energy by a factor
four at all scales. In the second case (run A2), we decrease the
residual energy to zero by raising the kinetic energy to the level
of magnetic energy in the whole spectral range. As a result of
this procedure, the relative cross-helicity is raised to about 0.4,
but still remains below 0.45 up to the end of the run. The pro-
gressive relaxation of the system toward equilibrium is shown
in Figs. 6 and 7. Panels a and b show the behavior of modes
k = 8, 16, 32 for the total energy compensated by k−5/3 and for
the residual energy normalized by the α = 1 equilibrium. One
sees in panels a that the three modes of the total energy remain
close together, indicating that the spectral scaling is basically
not modified by the perturbation. Panels b show that the three
modes of the normalized residual spectrum quickly recover the
α = 1 solution in the time lapse 10–12. This occurs within a fac-
tor very close to unity in run A1 (Fig. 6) and within a factor '0.8
in run A2 (Fig. 7).

Last, we compare the measured numerical relaxation of the
residual energy to the analytical solution of the Alfvén-dynamo
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Fig. 7. Run A2: return of residual energy to equilibrium after reducing
the residual energy to zero by increasing the kinetic energy to the level
of magnetic energy. Same caption as in previous figure.

(Eq. (5)) with α = 1. To this aim, we rewrite Eq. (5), replacing
the source term by the equilibrium solution of the α = 1 model,

∂tER(k, t) = (−ER(k, t) + ER
eq(k))/tD, (17)

where ER
eq(k) = (t0

A/tNL)ET(k), and assume the total energy spec-
trum (as well as the characteristic times t0

A and tNL) to be time
independent, which is reasonably correct for runs A1 and A2.
In practice, we replace these parameters by their value at time
t = 12: ER

eq(k) = [(t0
A/tNL)ET(k)]t=12. The model solutions thus

read

ER(k, t) = ER(k, 0)e−t/tD + ER
eq(k)(1 − e−t/tD ), (18)

where either tD = t0
A (Eq. (11)) or tD = tNL (Eq. (12)).

In panels c and d we show the model curves (thin lines),
where tD = t0

A and tD = tNL, respectively, together with the
numerical solutions. The agreement for the three modes k =
8, 16, 32 with the model tD = tNL is clearly much better than
with tD = t0

A. It is perfect for run A1 (Fig. 6d) and not as good for
run A2 (Fig. 7d), but still acceptable; the discrepancy is because
the new numerical equilibrium solution is a factor 0.8 smaller
than the theoretical equilibrium solution (Eq. (7) with α = 1).

After having validated the (α = 1) equilibrium model in
Sect. 3, we have now shown that the relaxation time is tD = tNL.
As a consequence, we deduce that the source term in Eq. (5)
reads ET

k /tdyn with tdyn = t2
NL/t

0
A, i.e., has the same form as in

the edqnm solution. In summary, we proved that the magnetic
excess results from the competition between two terms: (i) a
slow Alfvén damping with timescale equal to a nonlinear time
as predicted by critical balance and (ii) a source term identical to
that of the isotropic dynamo found in Grappin et al. (1983) and
MG05.

Fig. 8. Run C (incompressible MHD, no mean field, MG05). Spectra
at time t = 6.5. Top: reduced spectra; Bottom: isotropized spectra. Left:
total and residual energy spectra, compensated by k−5/3 and k−2, respec-
tively. Right: residual energy eR

α (k) normalized by the α = 1 prediction
(solid lines) and normalized by the α = 2 prediction (dotted lines).

4.3. Incompressible versus compressible simulations

We finally come back on the MG05 incompressible simulations,
which we indicated were well described by the α = 2 model,
contrary to our compressible simulations that satisfy the α =
1 model. We reexamined the MG05 simulations and found that
the origin of the discrepancy lies in the method used to build
1D residual energy spectra. In MG05, the spectra ER(k) were
built by averaging the spectral density within spherical shells
(later on “isotropized spectra”). In contrast, we used reduced
spectra, either ER(kx) (run B) or averages of the three reduced
spectra (run A). While we expect that choosing reduced or
isotropized spectra matters for run B because expansion intro-
duces a true physical anisotropy in the system (the radial direc-
tion becomes a symmetry axis), we expect nothing of the kind
without expansion. Indeed, we found that the choice of the spec-
trum (isotropized or reduced) makes no visible difference in scal-
ings when dealing with runs A, A1, A2 presented here.

However, by reexamining the incompressible MG05 sim-
ulations, we found a different situation: residual spectra (but
not total energy spectra) present different slopes, depending on
whether they are reduced or isotropized. Figure 8 shows spec-
tra for the incompressible run with no mean field considered in
MG05 (denoted as run C). Top panels show reduced spectra, bot-
tom panels show isotropized spectra, both at time t = 6.5.

While the total energy spectra show k−5/3 scalings no mat-
ter which spectrum is used, the residual reduced and isotropized
spectra show different scalings (compare panels a and c). The
reduced residual spectrum scales as k−2 (as do the compressible
runs analyzed in the present work), while the isotropized residual
spectrum scales as k−7/3, as reported in MG05. This is confirmed
in panels b and d, where we show the residual spectra normalized
by the α = 1 (solid lines) and α = 2 (dotted lines) predictions
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(Eq. (15)). The α = 1 model indeed matches the reduced spectra
while the α = 2 model matches the isotropized spectrum, at least
qualitatively. This clarifies the problem, but does not solve it; it
remains that the incompressible simulations are singular with re-
spect to the measurement of the residual energy spectrum.

4.4. Physical interpretation

We return to the list of different timescales in Eqs. (10)–(13) and
forget for a moment that we know which model matches both our
numerical (compressible) simulations and observational data.
Regarding the damping time tD, the Alfvén effect is clearly at the
origin of the damping of the magnetic excess. However, adopting
the isotropized Alfvén time tD = t0

A would contradict common
wisdom that most of the energy lies in directions perpendicular
to the local mean field (Biskamp 2003). Indeed, for the majority
of modes at a given scale 1/k, the effective damping time is not
equal to t0

A = 1/(kb0) but instead to 1/(k‖b0), which, by virtue
of the so-called critical balance (Goldreich & Sridhar 1995), is
about equal to the nonlinear time tNL: this yields tD = tNL. Now
we consider the dynamo time; the simplest choice is clearly
tdyn = tNL (Gogoberidze et al. 2012), but since tD = tNL, this
would imply that ER

k = Etot
k , in contradiction with solar wind

observations and our numerical evidence.
In contrast, the remaining alternative, tdyn = t2

NL/t
0
A, (together

with tD = tNL) matches our numerical data and observations.
Thus, the dynamo process responsible for the emergence and
sustainment of the observed magnetic excess (∼ET/(t2

NL/t
0
A)) is

not connected with the energy cascade (∼ET/tNL) in a straight-
forward way, as it proceeds on a timescale much longer than
the nonlinear time. This is not contradictory to what is known
about the dynamo process, which also relies on a (long time) in-
verse cascade of magnetic helicity. However, this gives a promi-
nent role to the isotropized Alfvén time, in contradiction with the
critical balance between the effective Alfvén time and nonlinear
time. We presently have no solution for this paradox or for the
sensitivity, in incompressible solutions, of the residual spectrum
to the definition of the spectrum (isotropized or reduced).

Other attempts to introduce anisotropy into the edqnm
equation have made the a priori assumption that the source
of the residual spectrum has the same structure as that of the
total energy spectrum (Boldyrev et al. 2012). However, again,
when applied to our case with no mean field, this assumption

immediately leads to the invalid α = 0 prediction for which mR =
mT, ER

k = ET
k .

Several questions remain to be solved and are postponed to
future work: (i) why incompressible simulations adopt a singular
behavior and (ii) what is the origin of the long timescale tdyn of
the local dynamo (Eq. (12)).
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