2,361 research outputs found

    Reach-scale bankfull channel types can exist independently of catchment hydrology

    Get PDF
    © 2020 John Wiley & Sons, Ltd. Reach-scale morphological channel classifications are underpinned by the theory that each channel type is related to an assemblage of reach- and catchment-scale hydrologic, topographic, and sediment supply drivers. However, the relative importance of each driver on reach morphology is unclear, as is the possibility that different driver assemblages yield the same reach morphology. Reach-scale classifications have never needed to be predicated on hydrology, yet hydrology controls discharge and thus sediment transport capacity. The scientific question is: do two or more regions with quantifiable differences in hydrologic setting end up with different reach-scale channel types, or do channel types transcend hydrologic setting because hydrologic setting is not a dominant control at the reach scale? This study answered this question by isolating hydrologic metrics as potential dominant controls of channel type. Three steps were applied in a large test basin with diverse hydrologic settings (Sacramento River, California) to: (1) create a reach-scale channel classification based on local site surveys, (2) categorize sites by flood magnitude, dimensionless flood magnitude, and annual hydrologic regime type, and (3) statistically analyze two hydrogeomorphic linkages. Statistical tests assessed the spatial distribution of channel types and the dependence of channel type morphological attributes by hydrologic setting. Results yielded 10 channel types. Nearly all types existed across all hydrologic settings, which is perhaps a surprising development for hydrogeomorphology. Downstream hydraulic geometry relationships were statistically significant. In addition, cobble-dominated uniform streams showed a consistent inverse relationship between slope and dimensionless flood magnitude, an indication of dynamic equilibrium between transport capacity and sediment supply. However, most morphological attributes showed no sorting by hydrologic setting. This study suggests that median hydraulic geometry relations persist across basins and within channel types, but hydrologic influence on geomorphic variability is likely due to local influences rather than catchment-scale drivers. © 2020 John Wiley & Sons, Ltd

    Numerical Design of Microporous Carbon Binder Domains Phase in Composite Cathodes for Lithium-Ion Batteries

    Get PDF
    Lithium-ion battery (LIB) performance can be significantly affected by the nature of the complex electrode microstructure. The carbon binder domain (CBD) present in almost all LIB electrodes is used to enhance mechanical stability and facilitate electronic conduction, and understanding the CBD phase microstructure and how it affects the complex coupled transport processes is crucial to LIB performance optimization. In this work, the influence of microporosity in the CBD phase has been studied in detail for the first time, enabling insight into the relationships between the CBD microstructure and the battery performance. To investigate the effect of the CBD pore size distributions, a random field method is used to generate in silico a multiple-phase electrode structure, including bimodal pore size distributions seen in practice and microporous CBD with a tunable pore size and variable transport properties. The distribution of macropores and the microporous CBD phase substantially affected simulated battery performance, where battery specific capacity improved as the microporosity of the CBD phase increased

    Internet and gaming addiction: a systematic literature review of neuroimaging studies

    Get PDF
    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches

    Numerical design of microporous carbon binder domains phase in composite cathodes for lithium-ion batteries

    Get PDF
    Lithium-ion battery (LIB) performance can be significantly affected by the nature of the complex electrode microstructure. The carbon binder domain (CBD) present in almost all LIB electrodes is used to enhance mechanical stability and facilitate electronic conduction, and understanding the CBD phase microstructure and how it affects the complex coupled transport processes is crucial to LIB performance optimization. In this work, the influence of microporosity in the CBD phase has been studied in detail for the first time, enabling insight into the relationships between the CBD microstructure and the battery performance. To investigate the effect of the CBD pore size distributions, a random field method is used to generate in silico a multiple-phase electrode structure, including bimodal pore size distributions seen in practice and microporous CBD with a tunable pore size and variable transport properties. The distribution of macropores and the microporous CBD phase substantially affected simulated battery performance, where battery specific capacity improved as the microporosity of the CBD phase increased

    The influence of portfolio aims and structure on student attitudes towards portfolios as a learning tool: A Scoping Review

    Get PDF
    Background: Portfolios are widely used in undergraduate health professional education, however the majority of literature suggests that these are poorly received by students, in terms of being an effective learning tool. Objectives: to evaluate whether the aims/purpose or structure/level of standardisation/content of student portfolios influences their attitudes to and perceptions of its use as a learning tool. Major Findings: Aims/purpose and structure/level of standardisation/content of portfolios were analysed in relation to student responses in order to determine any relationship between these. The level of information provided in the studies was variable, making analysis difficult, however there appeared to be no clear link between any of these factors and student responses. The interplay of level of support and guidance, the time required for completion of the portfolio, and the role of assessment appear to have the greatest influence on student views. Conclusions: Considering the wide use of portfolios in health professional education, student support for these is limited, and further research is required to determine if alternative approaches to portfolio learning can positively influence student attitudes and perceptions

    The fickle Mutation of a Cytoplasmic Tyrosine Kinase Effects Sensitization but not Dishabituation in Drosophila Melanogaster

    Get PDF
    fickle is a P-element mutation identified from a screen for defects in courtship behavior and disrupts the fly homolog of Bruton's tyrosine kinase (Btk) gene (Baba et al., 1999). Here, we show that habituation of the olfactory jump reflex also is defective in fickle. Unlike, the prototypical memory mutants, rutabaga and dunce, which habituate more slowly than normal, fickle flies habituate faster than normal. fickle's faster-than-normal response decrement did not appear to be due to sensorimotor fatigue, and dishabituation of the jump response was normal. Based on a long-standing “two opponent process” theory of habituation, these data suggested that behavioral sensitization might be defective in fickle. To test this hypothesis, we designed a olfactory sensitization procedure, using the same stimuli to habituate (odor) and dishabituate (vortexing) flies. Mutant flies failed to show any sensitization with this procedure. Our study reveals a “genetic dissection” of sensitization and dishabituation and, for the first time, provides a biological confirmation of the two opponent process theory of habituation

    Genetic and Other Contributions to Alcohol Intake in Rhesus Macaques ( Macaca mulatta )

    Full text link
    The etiology of alcoholism and alcohol abuse, like many other complex diseases, is heterogeneous and multifactorial. Numerous studies demonstrate a genetic contribution to variation in the expression of alcohol-related disorders in humans. Over the past decade, nonhuman primates have emerged as a valuable model for some aspects of human alcohol abuse because of their phylogenetic proximity to humans. Long-term, longitudinal studies of rhesus macaques ( Macaca mulatta ) have provided much insight into environmental influences, especially early life experiences, on alcohol consumption and behavior patterns that characterize alcohol intake later in life. It is not known, however, whether there is a genetic component as well to the variation seen in alcohol consumption in rhesus macaques. A significant genetic component to variation in alcohol consumption in rhesus macaques would show for the first time that like humans, for nonhuman primates additive genetic influences are important. Moreover, their use as a model for alcohol-related disorders in humans would have even greater relevance and utility for designing experiments incorporating the expanding molecular genetics field, and allow researchers to investigate the interaction among the known environmental influences and various genotypes. Methods : In this study, we investigate factors contributing to variation in alcohol consumption of 156 rhesus macaques collected over 10 years when subjects were adolescent in age, belonging to a single extended pedigree, with each cohort receiving identical early rearing backgrounds and subsequent treatments. To measure alcohol consumption each animal was provided unfettered simultaneous access both to an aspartame-sweetened 8.4% (v/v) alcohol-water solution, the aspartame-sweetened vehicle, and to water for 1 hour each day during the early afternoon between 13:00 and 15:00 in their home cages for a period of 5 to 7 weeks. We use multiple regression to identify factors that significantly affect alcohol consumption among these animals and a maximum likelihood program (ASReml) that, controlling for the significant factors, estimates the genetic contribution to the variance in alcohol consumption. Results : Multiple regression analysis identified test cohort and rearing environment as contributing to 57 and 2%, respectively, of the total variance in alcohol consumption. Of the remaining 41% of the variance about half (19.8%) was attributable to additive genetic effects using a maximum likelihood program. Conclusion : This study demonstrates that, as in humans, there are additive genetic factors that contribute to variation in alcohol consumption in rhesus macaques, with other nongenetic factors accounting for substantial portions of the variance in alcohol consumption, Our findings show the presence of an additive genetic component and suggest the potential utility of the nonhuman primate as a molecular genetics tool for understanding alcohol abuse and alcoholism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66182/1/j.1530-0277.2006.00044.x.pd
    corecore