606 research outputs found

    Rational foundation of GR in terms of statistical mechanic in the AdS/CFT framework

    Full text link
    In this article, we work out the microscopic statistical foundation of the supergravity description of the simplest 1/2 BPS sector in the AdS(5)/CFT(4). Then, all the corresponding supergravity observables are related to thermodynamical observables, and General Relativity is understood as a mean-field theory. In particular, and as an example, the Superstar is studied and its thermodynamical properties clarified.Comment: 13 pages, 6 eps figures, latex, some improvements introduced, reference added, typos correcte

    No Effect of a Whey Growth Factor Extract during Resistance Training on Strength, Body Composition, or Hypertrophic Gene Expression in Resistance-Trained Young Men

    Get PDF
    Growth factors can be isolated from bovine milk to form a whey growth factor extract (WGFE). This study examined whether WGFE promoted activation of the AKT/mTOR pathway enabling increased lean tissue mass and strength in resistance trained men. Forty six men with \u3e6 months of resistance training (RT) experience performed 12 weeks of RT. Participants consumed 20 g/day of whey protein and were randomised to receive either 1.6 g WGFE/day (WGFE; n = 22) or 1.6 g cellulose/day (control, CONT; n = 24). The primary outcome was leg press one-repetition maximum (LP1-RM) which was assessed at baseline, 6 and 12 weeks. At baseline and 12 weeks body composition was assessed by dual energy x-ray absorptiometry, and muscle protein synthesis and gene expression were assessed (vastus lateralis biopsy) in a sub-sample (WGFE n = 10, CONT n = 10) pre- and 3 hr post-training. RT increased LP1-RM (+34.9%) and lean tissue mass (+2.3%; p \u3c 0.05) with no difference between treatments (p \u3e 0.48, treatment x time). Post-exercise P70s6k phosphorylation increased acutely, FOXO3a phosphorylation was unaltered. There were no differences in kinase signalling or gene expression between treatments. Compared with CONT, WGFE did not result in greater increases in lean tissue mass or strength in experienced resistance trained men

    The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons

    Get PDF
    While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury

    1/16-BPS Black Holes and Giant Gravitons in the AdS_5 X S^5 Space

    Get PDF
    We explore 1/16-BPS objects of type IIB string theory in AdS_5 * S^5. First, we consider supersymmetric AdS_5 black holes, which should be 1/16-BPS and have a characteristic that not all physical charges are independent. We point out that the Bekenstein-Hawking entropy of these black holes admits a remarkably simple expression in terms of (dependent) physical charges, which suggests its microscopic origin via certain Cardy or Hardy-Ramanujan formula. We also note that there is an upper bound for the angular momenta given by the electric charges. Second, we construct a class of 1/16-BPS giant graviton solutions in AdS_5 * S^5 and explore their properties. The solutions are given by the intersections of AdS_5 * S^5 and complex 3 dimensional holomorphic hyperspaces in C^{1+5}, the latter being the zero loci of three holomorphic functions which are homogeneous with suitable weights on coordinates. We investigate examples of giant gravitons, including their degenerations to tensionless strings.Comment: 25 pages, no figures, v2: references added, comments added in the conclusio

    Semi-classical Probe Strings on Giant Gravitons Backgrounds

    Full text link
    In the first part of this paper we study two Z2Z_2 symmetries of the LLM metric, both of which exchange black and white regions. One of them which can be interpreted as the particle-hole symmetry is the symmetry of the whole supergravity solution while the second one is just the symmetry of the metric and changes the sign of the fivefrom flux. In the second part of the paper we use closed string probes and their semi-classical analysis to compare the two 1/2 BPS deformations of AdS5Ă—S5AdS_5\times S^5, the smooth LLM geometry which contains localized giant gravitons and the superstar case which is a solution with naked singularity corresponding to smeared giants. We discuss the realization of the Z2Z_2 symmetry in the semi-classical closed string probes point of view.Comment: 29 pages, 6 .eps figures; v2: References adde

    Extended Fermion Representation of Multi-Charge 1/2-BPS Operators in AdS/CFT -- Towards Field Theory of D-Branes --

    Full text link
    We extend the fermion representation of single-charge 1/2-BPS operators in the four-dimensional N=4 super Yang-Mills theory to general (multi-charge) 1/2-BPS operators such that all six directions of scalar fields play roles on an equal footing. This enables us to construct a field-theorectic representation for a second-quantized system of spherical D3-branes in the 1/2-BPS sector. The Fock space of D3-branes is characterized by a novel exclusion principle (called `Dexclusion' principle), and also by a nonlocality which is consistent with the spacetime uncertainty relation. The Dexclusion principle is realized by composites of two operators, obeying the usual canonical anticommutation relation and the Cuntz algebra, respectively. The nonlocality appears as a consequence of a superselction rule associated with a symmetry which is related to the scale invariance of the super Yang-Mills theory. The entropy of the so-called superstars, with multiple charges, which have been proposed to be geometries corresponding to the condensation of giant gravitons is discussed from our viewpoint and is argued to be consistent with the Dexclusion principle. Our construction may be regarded as a first step towards a possible new framework of general D-brane field theory.Comment: 43 pages, 4 figures; version 2, corrected typos and added reference

    The superconductivity at 18 K in LiFeAs system

    Full text link
    A new iron arsenide superconducting system LiFeAs was found that crystallizes into a tetragonal structure with space group P4/nmm. The superconductivity with Tc up to 18 K was observed in the compounds. This simple 111 type layered iron arsenide superconductor can be viewed as an analogue of the infinite layer structure of copper oxides.Comment: 11 pages 3 Figure

    Singularities and closed time-like curves in type IIB 1/2 BPS geometries

    Full text link
    We study in detail the moduli space of solutions discovered in LLM relaxing the constraint that guarantees the absence of singularities. The solutions fall into three classes, non-singular, null-singular and time machines with a time-like naked singularity. We study the general features of these metrics and prove that there are actually just two generic classes of space-times - those with null singularities are in the same class as the non-singular metrics. AdS/CFT seems to provide a dual description only for the first of these two types of space-time in terms of a unitary CFT indicating the possible existence of a chronology protection mechanism for this class of geometries.Comment: 34 pages, 7 figures, LaTeX. References adde

    The mental health of university students in the United Kingdom

    Get PDF
    There are increasing concerns globally about the mental health of students (Kadison,& Digeronimo, 2004). In the UK, the actual incidence of mental disturbance is unknown, although university counselling services report increased referrals (Association of University & College Counselling, 2011). This study assesses the levels of mental illness in undergraduate students to examine whether widening participation in education has resulted in increases as hypothesized by the UK Royal College of Psychiatrists (2003, 2011). Patterns of disturbance across years are compared to identify where problems arise. Students (N = 1197) completed the General Health Questionnaire-28 either on day one at university or midway through the academic year for first, second and third year students. Rates of mental illness in students equalled those of the general population but only 5.1% were currently receiving treatment. Second year students reported the most significant increases in psychiatric symptoms. Factors contributing to the problem are discussed

    The Library of Babel: On the origin of gravitational thermodynamics

    Full text link
    We show that heavy pure states of gravity can appear to be mixed states to almost all probes. For AdS_5 Schwarzschild black holes, our arguments are made using the field theory dual to string theory in such spacetimes. Our results follow from applying information theoretic notions to field theory operators capable of describing very heavy states in gravity. For half-BPS states of the theory which are incipient black holes, our account is exact: typical microstates are described in gravity by a spacetime ``foam'', the precise details of which are almost invisible to almost all probes. We show that universal low-energy effective description of a foam of given global charges is via certain singular spacetime geometries. When one of the specified charges is the number of D-branes, the effective singular geometry is the half-BPS ``superstar''. We propose this as the general mechanism by which the effective thermodynamic character of gravity emerges.Comment: LaTeX, 6 eps figures, uses young.sty and wick.sty; Version 2: typos corrected, minor rewordings and clarifications, references adde
    • …
    corecore