140 research outputs found

    Ecological drivers of helminth infection patterns in the Virunga Massif mountain gorilla population

    Get PDF
    The Virunga Massif mountain gorilla population has been periodically monitored since the early 1970s, with gradually increasing effort. The population declined drastically in the 1970s, but the numbers stabilized in the 1980s. Since then, the population has been steadily increasing within their limited habitat fragment that is surrounded by a dense human population. We examined fecal samples collected during the Virunga 2015–2016 surveys in monitored and unmonitored gorilla groups and quantified strongylid and tapeworm infections using egg counts per gram to determine environmental and host factors that shape these helminth infections. We showed that higher strongylid infections were present in gorilla groups with smaller size of the 500-m buffered minimum-convex polygon (MCP) of detected nest sites per gorilla group, but in higher gorilla densities and inhabiting vegetation types occurring at higher elevations with higher precipitation and lower temperatures. On the contrary, the impact of monitoring (habituation) was minor, detected in tapeworms and only when in the interaction with environmental variables and MCP area. Our results suggest that the Virunga mountain gorilla population may be partially regulated by strongylid nematodes at higher gorilla densities. New health challenges are probably emerging among mountain gorillas because of the success of conservation efforts, as manifested by significant increases in gorilla numbers in recent decades, but few possibilities for the population expansion due to limited amounts of habitat

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Get PDF
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation

    Population dynamics and genetic connectivity in recent chimpanzee history

    Get PDF
    Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees

    Structure of Chimpanzee Gut Microbiomes across Tropical Africa

    Get PDF
    Understanding variation in host-associated microbial communities is important given the relevance of microbiomes to host physiology and health. Using 560 fecal samples collected from wild chimpanzees (Pan troglodytes) across their range, we assessed how geography, genetics, climate, vegetation, and diet relate to gut microbial community structure (prokaryotes, eukaryotic parasites) at multiple spatial scales. We observed a high degree of regional specificity in the microbiome composition, which was associated with host genetics, available plant foods, and potentially with cultural differences in tool use, which affect diet. Genetic differences drove community composition at large scales, while vegetation and potentially tool use drove within-region differences, likely due to their influence on diet. Unlike industrialized human populations in the United States, where regional differences in the gut microbiome are undetectable, chimpanzee gut microbiomes are far more variable across space, suggesting that technological developments have decoupled humans from their local environments, obscuring regional differences that could have been important during human evolution. IMPORTANCE Gut microbial communities are drivers of primate physiology and health, but the factors that influence the gut microbiome in wild primate populations remain largely undetermined. We report data from a continent-wide survey of wild chimpanzee gut microbiota and highlight the effects of genetics, vegetation, and potentially even tool use at different spatial scales on the chimpanzee gut microbiome, including bacteria, archaea, and eukaryotic parasites. Microbial community dissimilarity was strongly correlated with chimpanzee population genetic dissimilarity, and vegetation composition and consumption of algae, honey, nuts, and termites were potentially associated with additional divergence in microbial communities between sampling sites. Our results suggest that host genetics, geography, and climate play a far stronger role in structuring the gut microbiome in chimpanzees than in humans

    Novelty Response of Wild African Apes to Camera Traps

    Get PDF
    Temperament and personality research in humans and nonhuman animals measures behavioral variation in individual, population, or species-specific traits with implications for survival and fitness, such as social status, foraging and mating success [1–5]. Curiosity and risk-taking tendencies have been studied extensively across taxa by measuring boldness and exploration responses to experimental novelty exposure [3,4,6–15]. Here, we conduct a natural field experiment using wildlife monitoring technology to test variation in the reaction of wild great apes (43 groups of naïve chimpanzees, bonobos and western gorillas, across 14 field sites in Africa) to a novel object, the camera-trap. Bonobo and gorilla groups demonstrated a stronger looking impulse towards the camera-trap device compared to chimpanzees, suggesting higher visual attention and curiosity. Bonobos were also more likely to show alarm and other fearful behaviors, although such neophobic (and conversely, neophilic) responses were generally rare. Among all three species, individuals looked at cameras longer when they were young, were associating with fewer individuals, and did not live near a long-term research site. Overall, these findings partially validate results from great ape novelty paradigms in captivity [7,8]. We further suggest that species-typical leadership styles [16] and social and environmental effects, including familiarity with humans, best explain novelty responses of wild great apes. In sum, this study illustrates the feasibility of large-scale field experiments and the importance of both intrinsic and extrinsic factors in shaping animal curiosity

    Distinct Behaviour of the Homeodomain Derived Cell Penetrating Peptide Penetratin in Interaction with Different Phospholipids

    Get PDF
    Penetratin is a protein transduction domain derived from the homeoprotein Antennapedia. Thereby it is currently used as a cell penetrating peptide to introduce diverse molecules into eukaryotic cells, and it could also be involved in the cellular export of transcription factors. Moreover, it has been shown that it is able to act as an antimicrobial agent. The mechanisms involved in all these processes are quite controversial.In this article, we report spectroscopic, calorimetric and biochemical data on the penetratin interaction with three different phospholipids: phosphatidylcholine (PC) and phosphatidylethanolamine (PE) to mimic respectively the outer and the inner leaflets of the eukaryotic plasma membrane and phosphatidylglycerol (PG) to mimic the bacterial membrane. We demonstrate that with PC, penetratin is able to form vesicle aggregates with no major change in membrane fluidity and presents no well defined secondary structure organization. With PE, penetratin aggregates vesicles, increases membrane rigidity and acquires an α-helical structure. With PG membranes, penetratin does not aggregate vesicles but decreases membrane fluidity and acquires a structure with both α-helical and β–sheet contributions.These data from membrane models suggest that the different penetratin actions in eukaryotic cells (membrane translocation during export and import) and on prokaryotes may result from different peptide and lipid structural arrangements. The data suggest that, for eukaryotic cell penetration, penetratin does not acquire classical secondary structure but requires a different conformation compared to that in solution

    Circulating microRNAs as novel biomarkers for diabetes mellitus.

    Get PDF
    Diabetes mellitus is characterized by insulin secretion from pancreatic β cells that is insufficient to maintain blood glucose homeostasis. Autoimmune destruction of β cells results in type 1 diabetes mellitus, whereas conditions that reduce insulin sensitivity and negatively affect β-cell activities result in type 2 diabetes mellitus. Without proper management, patients with diabetes mellitus develop serious complications that reduce their quality of life and life expectancy. Biomarkers for early detection of the disease and identification of individuals at risk of developing complications would greatly improve the care of these patients. Small non-coding RNAs called microRNAs (miRNAs) control gene expression and participate in many physiopathological processes. Hundreds of miRNAs are actively or passively released in the circulation and can be used to evaluate health status and disease progression. Both type 1 diabetes mellitus and type 2 diabetes mellitus are associated with distinct modifications in the profile of miRNAs in the blood, which are sometimes detectable several years before the disease manifests. Moreover, circulating levels of certain miRNAs seem to be predictive of long-term complications. Technical and scientific obstacles still exist that need to be overcome, but circulating miRNAs might soon become part of the diagnostic arsenal to identify individuals at risk of developing diabetes mellitus and its devastating complications

    An Antagomir to MicroRNA Let7f Promotes Neuroprotection in an Ischemic Stroke Model

    Get PDF
    We previously showed that middle-aged female rats sustain a larger infarct following experimental stroke as compared to younger female rats, and paradoxically, estrogen treatment to the older group is neurotoxic. Plasma and brain insulin-like growth factor-1 (IGF-1) levels decrease with age. However, IGF-1 infusion following stroke, prevents estrogen neurotoxicity in middle-aged female rats. IGF1 is neuroprotective and well tolerated, but also has potentially undesirable side effects. We hypothesized that microRNAs (miRNAs) that target the IGF-1 signaling family for translation repression could be alternatively suppressed to promote IGF-1-like neuroprotection. Here, we report that two conserved IGF pathway regulatory microRNAs, Let7f and miR1, can be inhibited to mimic and even extend the neuroprotection afforded by IGF-1. Anti-mir1 treatment, as late as 4 hours following ischemia, significantly reduced cortical infarct volume in adult female rats, while anti-Let7 robustly reduced both cortical and striatal infarcts, and preserved sensorimotor function and interhemispheric neural integration. No neuroprotection was observed in animals treated with a brain specific miRNA unrelated to IGF-1 (anti-miR124). Remarkably, anti-Let7f was only effective in intact females but not males or ovariectomized females indicating that the gonadal steroid environment critically modifies miRNA action. Let7f is preferentially expressed in microglia in the ischemic hemisphere and confirmed in ex vivo cultures of microglia obtained from the cortex. While IGF-1 was undetectable in microglia harvested from the non-ischemic hemisphere, IGF-1 was expressed by microglia obtained from the ischemic cortex and was further elevated by anti-Let7f treatment. Collectively these data support a novel miRNA-based therapeutic strategy for neuroprotection following stroke

    Small mammal responses to Amazonian forest islands are modulated by their forest dependence

    Get PDF
    Hydroelectric dams have induced widespread loss, fragmentation and degradation of terrestrial habitats in lowland tropical forests. Yet their ecological impacts have been widely neglected, particularly in developing countries, which are currently earmarked for exponential hydropower development. Here we assess small mammal assemblage responses to Amazonian forest habitat insularization induced by the 28-year-old Balbina Hydroelectric Dam. We sampled small mammals on 25 forest islands (0.83–1466 ha) and four continuous forest sites in the mainland to assess the overall community structure and species-specific responses to forest insularization. We classified all species according to their degree of forest-dependency using a multi-scale approach, considering landscape, patch and local habitat characteristics. Based on 65,520 trap-nights, we recorded 884 individuals of at least 22 small mammal species. Species richness was best predicted by island area and isolation, with small islands ( 200 ha; 10.8 ± 1.3 species) and continuous forest sites (∞ ha; 12.5 ± 2.5 species) exhibited similarly high species richness. Forest-dependent species showed higher local extinction rates and were often either absent or persisted at low abundances on small islands, where non-forest-dependent species became hyper-abundant. Species capacity to use non-forest habitat matrices appears to dictate small mammal success in small isolated islands. We suggest that ecosystem functioning may be highly disrupted on small islands, which account for 62.7% of all 3546 islands in the Balbina Reservoir

    High Glucose Suppresses Human Islet Insulin Biosynthesis by Inducing miR-133a Leading to Decreased Polypyrimidine Tract Binding Protein-Expression

    Get PDF
    BACKGROUND: Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB) is required for stabilization of insulin mRNA and the PTB mRNA 3'-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates. METHODOLOGY/PRINCIPAL FINDINGS: Human islets were cultured for 24 hours in the presence of low (5.6 mM) or high glucose (20 mM). Islets were also exposed to sodium palmitate or the proinflammatory cytokines IL-1beta and IFN-gamma, since saturated free fatty acids and cytokines also cause islet dysfunction. RNA was then isolated for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB was analyzed by immunoblotting following culture at low or high glucose. Culture in high glucose resulted in increased islet contents of miR-133a and reduced contents of miR-146. Cytokines increased the contents of miR-146. The insulin and PTB mRNA contents were unaffected by high glucose. However, both PTB protein levels and insulin biosynthesis rates were decreased in response to high glucose. The miR-133a inhibitor prevented the high glucose-induced decrease in PTB and insulin biosynthesis, and the miR-133a precursor decreased PTB levels and insulin biosynthesis similarly to high glucose. CONCLUSION: Prolonged high-glucose exposure down-regulates PTB levels and insulin biosynthesis rates in human islets by increasing miR-133a levels. We propose that this mechanism contributes to hyperglycemia-induced beta-cell dysfunction
    corecore