179 research outputs found

    Pine Needle Abortion in Cattle: A Progress Report

    Get PDF
    Cow and calf loss due to pine needle abortion (PNA) in cattle grazing foothill ranges having stands of ponderosa pine (Pinus ponderosa) continues to cause managerial, as well as economic problems, for many ranchers in South Dakota, Colorado, Idaho and California as well as many areas in Canada

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Skills-based intervention to enhance collaborative decision-making: systematic adaptation and open trial protocol for veterans with psychosis

    Get PDF
    Background Collaborative decision-making is an innovative decision-making approach that assigns equal power and responsibility to patients and providers. Most veterans with serious mental illnesses like schizophrenia want a greater role in treatment decisions, but there are no interventions targeted for this population. A skills-based intervention is promising because it is well-aligned with the recovery model, uses similar mechanisms as other evidence-based interventions in this population, and generalizes across decisional contexts while empowering veterans to decide when to initiate collaborative decision-making. Collaborative Decision Skills Training (CDST) was developed in a civilian serious mental illness sample and may fill this gap but needs to undergo a systematic adaptation process to ensure fit for veterans. Methods In aim 1, the IM Adapt systematic process will be used to adapt CDST for veterans with serious mental illness. Veterans and Veteran’s Affairs (VA) staff will join an Adaptation Resource Team and complete qualitative interviews to identify how elements of CDST or service delivery may need to be adapted to optimize its effectiveness or viability for veterans and the VA context. During aim 2, an open trial will be conducted with veterans in a VA Psychosocial Rehabilitation and Recovery Center (PRRC) to assess additional adaptations, feasibility, and initial evidence of effectiveness. Discussion This study will be the first to evaluate a collaborative decision-making intervention among veterans with serious mental illness. It will also contribute to the field’s understanding of perceptions of collaborative decision-making among veterans with serious mental illness and VA clinicians, and result in a service delivery manual that may be used to understand adaptation needs generally in VA PRRCs

    Addressing statistical biases in nucleotide-derived protein databases for proteogenomic search strategies

    Get PDF
    [Image: see text] Proteogenomics has the potential to advance genome annotation through high quality peptide identifications derived from mass spectrometry experiments, which demonstrate a given gene or isoform is expressed and translated at the protein level. This can advance our understanding of genome function, discovering novel genes and gene structure that have not yet been identified or validated. Because of the high-throughput shotgun nature of most proteomics experiments, it is essential to carefully control for false positives and prevent any potential misannotation. A number of statistical procedures to deal with this are in wide use in proteomics, calculating false discovery rate (FDR) and posterior error probability (PEP) values for groups and individual peptide spectrum matches (PSMs). These methods control for multiple testing and exploit decoy databases to estimate statistical significance. Here, we show that database choice has a major effect on these confidence estimates leading to significant differences in the number of PSMs reported. We note that standard target:decoy approaches using six-frame translations of nucleotide sequences, such as assembled transcriptome data, apparently underestimate the confidence assigned to the PSMs. The source of this error stems from the inflated and unusual nature of the six-frame database, where for every target sequence there exists five “incorrect” targets that are unlikely to code for protein. The attendant FDR and PEP estimates lead to fewer accepted PSMs at fixed thresholds, and we show that this effect is a product of the database and statistical modeling and not the search engine. A variety of approaches to limit database size and remove noncoding target sequences are examined and discussed in terms of the altered statistical estimates generated and PSMs reported. These results are of importance to groups carrying out proteogenomics, aiming to maximize the validation and discovery of gene structure in sequenced genomes, while still controlling for false positives

    The Relationship Between Homework Compliance and Therapy Outcomes: An Updated Meta-Analysis

    Get PDF
    The current study was an updated meta-analysis of manuscripts since the year 2000 examining the effects of homework compliance on treatment outcome. A total of 23 studies encompassing 2,183 subjects were included. Results indicated a significant relationship between homework compliance and treatment outcome suggesting a small to medium effect (r = .26; 95% CI = .19–.33). Moderator analyses were conducted to determine the differential effect size of homework on treatment outcome by target symptoms (e.g., depression; anxiety), source of homework rating (e.g., client; therapist), timing of homework rating (e.g., retroactive vs. contemporaneous), and type of homework rating (e.g., Likert; total homeworks completed). Results indicated that effect sizes were robust across target symptoms, but differed by source of homework rating, timing of homework rating, and type of homework rating. Specifically, studies utilizing combined client and therapist ratings of compliance had significantly higher mean effect size relative to those using therapist only assessments and those using objective assessments. Further, studies that rated the percentage of homeworks completed had a significantly lower mean effect size compared to studies using Likert ratings, and retroactive assessments had higher effect size than contemporaneous assessments

    Lowering β-Amyloid Levels Rescues Learning and Memory in a Down Syndrome Mouse Model

    Get PDF
    β-amyloid levels are elevated in Down syndrome (DS) patients throughout life and are believed to cause Alzheimer's disease (AD) in adult members of this population. However, it is not known if β-amyloid contributes to intellectual disability in younger individuals. We used a γ-secretase inhibitor to lower β-amyloid levels in young mice that model DS. This treatment corrected learning deficits characteristic of these mice, suggesting that β-amyloid-lowering therapies might improve cognitive function in young DS patients

    Assessing stimulus–stimulus (semantic) conflict in the Stroop task using saccadic two-to-one color response mapping and preresponse pupillary measures

    Get PDF
    © 2015, The Psychonomic Society, Inc. Conflict in the Stroop task is thought to come from various stages of processing, including semantics. Two-to-one response mappings, in which two response-set colors share a common response location, have been used to isolate stimulus–stimulus (semantic) from stimulus–response conflict in the Stroop task. However, the use of congruent trials as a baseline means that the measured effects could be exaggerated by facilitation, and recent research using neutral, non-color-word trials as a baseline has supported this notion. In the present study, we sought to provide evidence for stimulus–stimulus conflict using an oculomotor Stroop task and an early, preresponse pupillometric measure of effort. The results provided strong (Bayesian) evidence for no statistical difference between two-to-one response-mapping trials and neutral trials in both saccadic response latencies and preresponse pupillometric measures, supporting the notion that the difference between same-response and congruent trials indexes facilitation in congruent trials, and not stimulus–stimulus conflict, thus providing evidence against the presence of semantic conflict in the Stroop task. We also demonstrated the utility of preresponse pupillometry in measuring Stroop interference, supporting the idea that pupillary effects are not simply a residue of making a response
    corecore