104 research outputs found

    Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers

    Get PDF
    Evaluation and mitigation of enteric methane (CH4) emissions from ruminant livestock, in particular from dairy cows, have acquired global importance for sustainable, climate-smart cattle production. Based on CH4 reference measurements obtained with the SF6 tracer technique to determine ruminal CH4 production, a current equation permits evaluation of individual daily CH4 emissions of dairy cows based on milk Fourier transform mid-infrared (FT-MIR) spectra. However, the respiration chamber (RC) technique is considered to be more accurate than SF6 to measure CH4 production from cattle. This study aimed to develop an equation that allows estimating CH4 emissions of lactating cows recorded in an RC from corresponding milk FT-MIR spectra and to challenge its robustness and relevance through validation processes and its application on a milk spectral database. This would permit confirming the conclusions drawn with the existing equation based on SF6 reference measurements regarding the potential to estimate daily CH4 emissions of dairy cows from milk FT-MIR spectra. A total of 584 RC reference CH4 measurements (mean ± standard deviation of 400 ± 72 g of CH4/d) and corresponding standardized milk mid-infrared spectra were obtained from 148 individual lactating cows between 7 and 321 d in milk in 5 European countries (Germany, Switzerland, Denmark, France, and Northern Ireland). The developed equation based on RC measurements showed calibration and cross-validation coefficients of determination of 0.65 and 0.57, respectively, which is lower than those obtained earlier by the equation based on 532 SF6 measurements (0.74 and 0.70, respectively). This means that the RC-based model is unable to explain the variability observed in the corresponding reference data as well as the SF6-based model. The standard errors of calibration and cross-validation were lower for the RC model (43 and 47 g/d vs. 66 and 70 g/d for the SF6 version, respectively), indicating that the model based on RC data was closer to actual values. The root mean squared error (RMSE) of calibration of 42 g/d represents only 10% of the overall daily CH4 production, which is 23 g/d lower than the RMSE for the SF6-based equation. During the external validation step an RMSE of 62 g/d was observed. When the RC equation was applied to a standardized spectral database of milk recordings collected in the Walloon region of Belgium between January 2012 and December 2017 (1,515,137 spectra from 132,658 lactating cows in 1,176 different herds), an average ± standard deviation of 446 ± 51 g of CH4/d was estimated, which is consistent with the range of the values measured using both RC and SF6 techniques. This study confirmed that milk FT-MIR spectra could be used as a potential proxy to estimate daily CH4 emissions from dairy cows provided that the variability to predict is covered by the model

    Novel genetic parameters for genetic residual feed intake in dairy cattle using time series data from multiple parities and countries in North America and Europe.

    Get PDF
    Residual feed intake is viewed as an important trait in breeding programs that could be used to enhance genetic progress in feed efficiency. In particular, improving feed efficiency could improve both economic and environmental sustainability in the dairy cattle industry. However, data remain sparse, limiting the development of reliable genomic evaluations across lactation and parity for residual feed intake. Here, we estimated novel genetic parameters for genetic residual feed intake (gRFI) across the first, second, and third parity, using a random regression model. Research data on the measured feed intake, milk production, and body weight of 7,379 cows (271,080 records) from 6 countries in 2 continents were shared through the Horizon 2020 project GenTORE and Resilient Dairy Genome Project. The countries included Canada (1,053 cows with 47,130 weekly records), Denmark (1,045 cows with 72,760 weekly records), France (329 cows with 16,888 weekly records), Germany (938 cows with 32,614 weekly records), the Netherlands (2,051 cows with 57,830 weekly records), and United States (1,963 cows with 43,858 weekly records). Each trait had variance components estimated from first to third parity, using a random regression model across countries. Genetic residual feed intake was found to be heritable in all 3 parities, with first parity being predominant (range: 22-34%). Genetic residual feed intake was highly correlated across parities for mid- to late lactation; however, genetic correlation across parities was lower during early lactation, especially when comparing first and third parity. We estimated a genetic correlation of 0.77 ± 0.37 between North America and Europe for dry matter intake at first parity. Published literature on genetic correlations between high input countries/continents for dry matter intake support a high genetic correlation for dry matter intake. In conclusion, our results demonstrate the feasibility of estimating variance components for gRFI across parities, and the value of sharing data on scarce phenotypes across countries. These results can potentially be implemented in genetic evaluations for gRFI in dairy cattle

    Деякі проблеми використання тимчасово зайнятих земель

    Get PDF
    <div><p>Glucocorticoid induced-leucine zipper (GILZ) has been shown to be induced in cells by different stimuli such as glucocorticoids, IL-10 or deprivation of IL-2. GILZ has anti-inflammatory properties and may be involved in signalling modulating apoptosis. Herein we demonstrate that wildtype <em>Yersinia enterocolitica</em> which carry the pYV plasmid upregulated GILZ mRNA levels and protein expression in epithelial cells. Infection of HeLa cells with different <em>Yersinia</em> mutant strains revealed that the protease activity of YopT, which cleaves the membrane-bound form of Rho GTPases was sufficient to induce GILZ expression. Similarly, <em>Clostridium difficile</em> toxin B, another bacterial inhibitor of Rho GTPases induced GILZ expression. YopT and toxin B both increased transcriptional activity of the GILZ promoter in HeLa cells. GILZ expression could not be linked to the inactivation of an individual Rho GTPase by these toxins. However, forced expression of RhoA and RhoB decreased basal <em>GILZ</em> promoter activity. Furthermore, MAPK activation proved necessary for profound GILZ induction by toxin B. Promoter studies and gel shift analyses defined binding of upstream stimulatory factor (USF) 1 and 2 to a canonical c-Myc binding site (E-box) in the <em>GILZ</em> promoter as a crucial step of its trans-activation. In addition we could show that USF-1 and USF-2 are essential for basal as well as toxin B induced GILZ expression. These findings define a novel way of <em>GILZ</em> promoter trans-activation mediated by bacterial toxins and differentiate it from those mediated by dexamethasone or deprivation of IL-2.</p> </div

    Cloud-scale VM Deflation for Running Interactive Applications On Transient Servers

    Full text link
    Transient computing has become popular in public cloud environments for running delay-insensitive batch and data processing applications at low cost. Since transient cloud servers can be revoked at any time by the cloud provider, they are considered unsuitable for running interactive application such as web services. In this paper, we present VM deflation as an alternative mechanism to server preemption for reclaiming resources from transient cloud servers under resource pressure. Using real traces from top-tier cloud providers, we show the feasibility of using VM deflation as a resource reclamation mechanism for interactive applications in public clouds. We show how current hypervisor mechanisms can be used to implement VM deflation and present cluster deflation policies for resource management of transient and on-demand cloud VMs. Experimental evaluation of our deflation system on a Linux cluster shows that microservice-based applications can be deflated by up to 50\% with negligible performance overhead. Our cluster-level deflation policies allow overcommitment levels as high as 50\%, with less than a 1\% decrease in application throughput, and can enable cloud platforms to increase revenue by 30\%.Comment: To appear at ACM HPDC 202

    Accuracy of genomic prediction of dry matter intake in Dutch Holsteins using sequence variants from meta-analyses

    Get PDF
    We evaluated the accuracy of biology informed genomic prediction for dry matter intake in 2,162 Dutch Holstein cows. Sequence variants were selected from meta-analyses including GWAS summary statistics for QTL and metabolomic QTL in several dairy and crossbred beef populations. Selected variants were prioritized in GBLUP models in a five-fold cross-validation. The accuracies were compared to genomic prediction based on routine 50k genotype data. The average accuracy for the 50k scenario was 0.683. Adding selected sequence variants in the GBLUP model did not improve the accuracies for dry matter intake. Next steps will include testing Bayesian variable selection methods to prioritize variants in genomic prediction for dry matter intake

    Towards Efficient and Scalable Data-Intensive Content Delivery: State-of-the-Art, Issues and Challenges

    Get PDF
    This chapter presents the authors’ work for the Case Study entitled “Delivering Social Media with Scalability” within the framework of High-Performance Modelling and Simulation for Big Data Applications (cHiPSet) COST Action 1406. We identify some core research areas and give an outline of the publications we came up within the framework of the aforementioned action. The ease of user content generation within social media platforms, e.g. check-in information, multimedia data, etc., along with the proliferation of Global Positioning System (GPS)-enabled, always-connected capture devices lead to data streams of unprecedented amount and a radical change in information sharing. Social data streams raise a variety of practical challenges: derivation of real-time meaningful insights from effectively gathered social information, a paradigm shift for content distribution with the leverage of contextual data associated with user preferences, geographical characteristics and devices in general, etc. In this article we present the methodology we followed, the results of our work and the outline of a comprehensive survey, that depicts the state-of-the-art situation and organizes challenges concerning social media streams and the infrastructure of the data centers supporting the efficient access to data streams in terms of content distribution, data diffusion, data replication, energy efficiency and network infrastructure. The challenges of enabling better provisioning of social media data have been identified and they were based on the context of users accessing these resources. The existing literature has been systematized and the main research points and industrial efforts in the area were identified and analyzed. In our works, in the framework of the Action, we came up with potential solutions addressing the problems of the area and described how these fit in the general ecosystem
    corecore