958 research outputs found

    Public Intervention in Administrative Licensing and the Burden of Proof

    Get PDF

    Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    Get PDF
    Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m[superscript −2], dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effect is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m[superscript −2]). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m[superscript −2]), while over Boreal Asia the overestimation is +43 % (−1.9 W m[superscript −2]). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.National Science Foundation (U.S.) (AGS-1339264)United States. Department of Energy (DE-FG02-94ER61937)United States. Environmental Protection Agency (XA-83600001-1

    Following Display Rules in Good or Bad Faith?: Customer Orientation as a Moderator of the Display Rule-Emotional Labor Relationship

    Get PDF
    Organizational display rules (e.g., “service with a smile”) have had mixed relationships with employee emotional labor—either in the form of “bad faith” surface acting (suppressing or faking expressions) or “good faith” deep acting (modifying inner feelings). We draw on the motivational perspective of emotional labor to argue that individual differences in customer orientation will directly and indirectly relate to these acting strategies in response to display rules.With a survey of more than 500 working adults in customer contact positions, and controlling for affective disposition, we find that customer orientation directly increases “good faith” acting while it moderates the relationship of display rules with “bad faith” acting

    Impacts on cloud radiative effects induced by coexisting aerosols converted from international shipping and maritime DMS emissions

    Get PDF
    International shipping emissions (ISE), particularly sulfur dioxide, can influence the global radiation budget by interacting with clouds and radiation after being oxidized into sulfate aerosols. A better understanding of the uncertainties in estimating the cloud radiative effects (CREs) of ISE is of great importance in climate science. Many international shipping tracks cover oceans with substantial natural dimethyl sulfide (DMS) emissions. The interplay between these two major aerosol sources on CREs over vast oceanic regions with a relatively low aerosol concentration is an intriguing yet poorly addressed issue confounding estimation of the CREs of ISE. Using an Earth system model including two aerosol modules with different aerosol mixing configurations, we derive a significant global net CRE of ISE (−0.153 W m−2 with a standard error of ±0.004 W m−2) when using emissions consistent with current ship emission regulations. This global net CRE would become much weaker and actually insignificant (−0.001 W m−2 standard error of ±0.007 W m−2) if a more stringent regulation were adopted. We then reveal that the ISE-induced CRE would achieve a significant enhancement when a lower DMS emission is prescribed in the simulations, owing to the sublinear relationship between aerosol concentration and cloud response. In addition, this study also demonstrates that the representation of certain aerosol processes, such as mixing states, can influence the magnitude and pattern of the ISE-induced CRE. These findings suggest a reevaluation of the ISE-induced CRE with consideration of DMS variability

    Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG

    Get PDF
    Abstract We quantify the effective radiative forcing (ERF) of anthropogenic aerosols modelled by the aerosol–climate model CAM5.3-MARC-ARG. CAM5.3-MARC-ARG is a new configuration of the Community Atmosphere Model version 5.3 (CAM5.3) in which the default aerosol module has been replaced by the two-Moment, Multi-Modal, Mixing-state-resolving Aerosol model for Research of Climate (MARC). CAM5.3-MARC-ARG uses the ARG aerosol-activation scheme, consistent with the default configuration of CAM5.3. We compute differences between simulations using year-1850 aerosol emissions and simulations using year-2000 aerosol emissions in order to assess the radiative effects of anthropogenic aerosols. We compare the aerosol lifetimes, aerosol column burdens, cloud properties, and radiative effects produced by CAM5.3-MARC-ARG with those produced by the default configuration of CAM5.3, which uses the modal aerosol module with three log-normal modes (MAM3), and a configuration using the modal aerosol module with seven log-normal modes (MAM7). Compared with MAM3 and MAM7, we find that MARC produces stronger cooling via the direct radiative effect, the shortwave cloud radiative effect, and the surface albedo radiative effect; similarly, MARC produces stronger warming via the longwave cloud radiative effect. Overall, MARC produces a global mean net ERF of −1.79±0.03 W m−2, which is stronger than the global mean net ERF of −1.57±0.04 W m−2 produced by MAM3 and −1.53±0.04 W m−2 produced by MAM7. The regional distribution of ERF also differs between MARC and MAM3, largely due to differences in the regional distribution of the shortwave cloud radiative effect. We conclude that the specific representation of aerosols in global climate models, including aerosol mixing state, has important implications for climate modelling

    The weekend matters: Relationships between stress recovery and affective experiences

    Full text link
    Non-work experiences during the weekend provide opportunities to recover from work demands and to replenish lost resources. This longitudinal study examined how specific recovery experiences during the weekend (relaxation, mastery, control, and detachment), as well as non-work hassles, were associated with specific positive and negative affective states during the following workweek. Participants (N 1⁄4 229) completed surveys before the week- end, during the weekend, and during the following workweek. Hierarchical regression analyses revealed that after controlling for affective states the previous week, recovery experiences during the weekend significantly explained variance in affective states at the end of the weekend and during the following workweek. Suggestions for future research include a closer examination of the role of individual differences, self-regulation, and specific work demands in employee stress recovery
    corecore