33 research outputs found

    Formation, contraction, and mechanotransduction of myofribrils in cardiac development: clues from genetics

    Get PDF
    Congenital heart disease (CHD) is the most common birth defect in humans. It is a leading infant mortality factor worldwide, caused by defective cardiac development. Mutations in transcription factors, signalling and structural molecules have been shown to contribute to the genetic component of CHD. Recently, mutations in genes encoding myofibrillar proteins expressed in the embryonic heart have also emerged as an important genetic causative factor of the disease, which implies that the contraction of the early heart primordium contributes to its morphogenesis. This notion is supported by increasing evidence suggesting that not only contraction but also formation, mechanosensing, and mechanotransduction of the cardiac myofibrillar proteins influence heart development. In this paper, we summarize the genetic clues supporting this idea

    Formation, Contraction, and Mechanotransduction of Myofribrils in Cardiac Development: Clues from Genetics

    Get PDF
    Congenital heart disease (CHD) is the most common birth defect in humans. It is a leading infant mortality factor worldwide, caused by defective cardiac development. Mutations in transcription factors, signalling and structural molecules have been shown to contribute to the genetic component of CHD. Recently, mutations in genes encoding myofibrillar proteins expressed in the embryonic heart have also emerged as an important genetic causative factor of the disease, which implies that the contraction of the early heart primordium contributes to its morphogenesis. This notion is supported by increasing evidence suggesting that not only contraction but also formation, mechanosensing, and mechanotransduction of the cardiac myofibrillar proteins influence heart development. In this paper, we summarize the genetic clues supporting this idea

    Combined mutation screening of NKX2-5, GATA4, and TBX5 in congenital heart disease: multiple heterozygosity and novel mutations

    Get PDF
    Background: Variants of several genes encoding transcription modulators, signal transduction, and structural proteins are known to cause Mendelian congenital heart disease (CHD). NKX2-5 and GATA4 were the first CHD-causing genes identified by linkage analysis in large affected families. Mutations of TBX5 cause Holt–Oram syndrome, which includes CHD as a clinical feature. All three genes have a well-established role in cardiac development. Design: In order to investigate the possible role of multiple mutations in CHD, a combined mutation screening was performed in NKX2-5, GATA4, and TBX5 in the same patient cohort. Samples from a cohort of 331 CHD patients were analyzed by polymerase chain reaction, double high-performance liquid chromatography and sequencing in order to identify changes in the NKX2-5, GATA4, and TBX5 genes. Results: Two cases of multiple heterozygosity of putative disease-causing mutations were identified. One patient was found with a novel L122P NKX2-5 mutation in combination with the private A1443D mutation of MYH6. A patient heterozygote for a D425N GATA4 mutation carries also a private mutation of the MYH6 gene (V700M). Conclusions: In addition to reporting two novel mutations of NKX2-5 in CHD, we describe families where multiple individual mutations seem to have an additive effect over the pathogenesis of CHD. Our findings highlight the usefulness of multiple gene mutational analysis of large CHD cohorts

    Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects

    Get PDF
    Tropomyosin 1 (TPM1) is an essential sarcomeric component, stabilising the thin filament and facilitating actin's interaction with myosin. A number of sarcomeric proteins, such as alpha myosin heavy chain, play crucial roles in cardiac development. Mutations in these genes have been linked to congenital heart defects (CHDs), occurring in approximately 1 in 145 live births. To date, TPM1 has not been associated with isolated CHDs. Analysis of 380 CHD cases revealed three novel mutations in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and a polyadenylation signal site variant GATAAA/AATAAA. Analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. In addition, abnormal structural properties were found in hearts transfected with TPM1 carrying I130V and S229F mutations. Phenotypic analysis of TPM1 morpholino-treated embryos revealed roles for TPM1 in cardiac looping, atrial septation and ventricular trabeculae formation and increased apoptosis was seen within the heart. In addition, sarcomere assembly was affected and altered action potentials were exhibited. This study demonstrated that sarcomeric TPM1 plays vital roles in cardiogenesis and is a suitable candidate gene for screening individuals with isolated CHDs

    Combined mutation screening of NKX2-5, GATA4, and TBX5 in congenital heart disease: multiple heterozygosity and novel mutations

    Get PDF
    Background: Variants of several genes encoding transcription modulators, signal transduction, and structural proteins are known to cause Mendelian congenital heart disease (CHD). NKX2-5 and GATA4 were the first CHD-causing genes identified by linkage analysis in large affected families. Mutations of TBX5 cause Holt–Oram syndrome, which includes CHD as a clinical feature. All three genes have a well-established role in cardiac development. Design: In order to investigate the possible role of multiple mutations in CHD, a combined mutation screening was performed in NKX2-5, GATA4, and TBX5 in the same patient cohort. Samples from a cohort of 331 CHD patients were analyzed by polymerase chain reaction, double high-performance liquid chromatography and sequencing in order to identify changes in the NKX2-5, GATA4, and TBX5 genes. Results: Two cases of multiple heterozygosity of putative disease-causing mutations were identified. One patient was found with a novel L122P NKX2-5 mutation in combination with the private A1443D mutation of MYH6. A patient heterozygote for a D425N GATA4 mutation carries also a private mutation of the MYH6 gene (V700M). Conclusions: In addition to reporting two novel mutations of NKX2-5 in CHD, we describe families where multiple individual mutations seem to have an additive effect over the pathogenesis of CHD. Our findings highlight the usefulness of multiple gene mutational analysis of large CHD cohorts

    Genetic Variation in VEGF Does Not Contribute Significantly to the Risk of Congenital Cardiovascular Malformation

    Get PDF
    Several previous studies have investigated the role of common promoter variants in the vascular endothelial growth factor (VEGF) gene in causing congenital cardiovascular malformation (CVM). However, results have been discrepant between studies and no study to date has comprehensively characterised variation throughout the gene. We genotyped 771 CVM cases, of whom 595 had the outflow tract malformation Tetralogy of Fallot (TOF), and carried out TDT and case-control analyses using haplotype-tagging SNPs in VEGF. We carried out a meta-analysis of previous case-control or family-based studies that had typed VEGF promoter SNPs, which included an additional 570 CVM cases. To identify rare variants potentially causative of CVM, we carried out mutation screening in all VEGF exons and splice sites in 93 TOF cases. There was no significant effect of any VEGF haplotype-tagging SNP on the risk of CVM in our analyses of 771 probands. When the results of this and all previous studies were combined, there was no significant effect of the VEGF promoter SNPs rs699947 (OR 1.05 [95% CI 0.95–1.17]); rs1570360 (OR 1.17 [95% CI 0.99–1.26]); and rs2010963 (OR 1.04 [95% CI 0.93–1.16]) on the risk of CVM in 1341 cases. Mutation screening of 93 TOF cases revealed no VEGF coding sequence variants and no changes at splice consensus sequences. Genetic variation in VEGF appears to play a small role, if any, in outflow tract CVM susceptibility

    Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls

    Get PDF
    Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ∼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9-107.6); P = 2.2 × 10−7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4-22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100-200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8-64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locu

    Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls

    Get PDF
    Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ∼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9–107.6); P = 2.2 × 10−7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4–22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100–200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8–64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locus

    Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot

    Get PDF
    We conducted a genome-wide association study to search for risk alleles associated with Tetralogy of Fallot (TOF), using a northern European discovery set of 835 cases and 5159 controls. A region on chromosome 12q24 was associated (P = 1.4 × 10−7) and replicated convincingly (P = 3.9 × 10−5) in 798 cases and 2931 controls [per allele odds ratio (OR) = 1.27 in replication cohort, P = 7.7 × 10−11 in combined populations]. Single nucleotide polymorphisms in the glypican 5 gene on chromosome 13q32 were also associated (P = 1.7 × 10−7) and replicated convincingly (P = 1.2 × 10−5) in 789 cases and 2927 controls (per allele OR = 1.31 in replication cohort, P = 3.03 × 10−11 in combined populations). Four additional regions on chromosomes 10, 15 and 16 showed suggestive association accompanied by nominal replication. This study, the first genome-wide association study of a congenital heart malformation phenotype, provides evidence that common genetic variation influences the risk of TO

    Rare variants in NR2F2 cause congenital heart defects in humans

    Get PDF
    Congenital heart defects (CHDs) are the most common birth defect worldwide and are a leading cause of neonatal mortality. Nonsyndromic atrioventricular septal defects (AVSDs) are an important subtype of CHDs for which the genetic architecture is poorly understood. We performed exome sequencing in 13 parent-offspring trios and 112 unrelated individuals with nonsyndromic AVSDs and identified five rare missense variants (two of which arose de novo) in the highly conserved gene NR2F2, a very significant enrichment (p = 7.7 × 10?7) compared to 5,194 control subjects. We identified three additional CHD-affected families with other variants in NR2F2 including a de novo balanced chromosomal translocation, a de novo substitution disrupting a splice donor site, and a 3 bp duplication that cosegregated in a multiplex family. NR2F2 encodes a pleiotropic developmental transcription factor, and decreased dosage of NR2F2 in mice has been shown to result in abnormal development of atrioventricular septa. Via luciferase assays, we showed that all six coding sequence variants observed in individuals significantly alter the activity of NR2F2 on target promoters
    corecore