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Congenital heart disease (CHD) is the most common birth defect in humans. It is a leading infant mortality factor worldwide,
caused by defective cardiac development. Mutations in transcription factors, signalling and structural molecules have been shown
to contribute to the genetic component of CHD. Recently, mutations in genes encoding myofibrillar proteins expressed in the
embryonic heart have also emerged as an important genetic causative factor of the disease, which implies that the contraction of
the early heart primordium contributes to its morphogenesis. This notion is supported by increasing evidence suggesting that not
only contraction but also formation, mechanosensing, and mechanotransduction of the cardiac myofibrillar proteins influence
heart development. In this paper, we summarize the genetic clues supporting this idea.

1. Introduction

The heart is the first organ to form in vertebrates during
embryogenesis, and cardiac contraction initiates shortly after
the cardiac tube is formed. The ever increasing needs of the
peripheral tissues of the growing embryo for nutrients and
oxygen are met gradually by the blood circulation induced
by early cardiac contraction. The heart primordium has to
perform its function for most of its own development, and
this unique feature has profound implications in the rela-
tionship between form and function during cardiogenesis:
factors that compromise early cardiac function result in
altered morphology, and heart malformation usually has an
important impact over the function of the organ. Defective
heart development results in congenital heart disease (CHD),
the commonest congenital defect in humans and a leading
cause of infant mortality worldwide. CHD is a complex dis-
ease, as multiple genetic and environmental factors have been
implicated in its pathogenesis. As in most complex diseases,
most cases are sporadic, although a relatively small fraction
of cases show familial segregation, following Mendelian pat-
terns of inheritance. The study and identification of the
genes causing the familial forms of the disorder can also give
important information about the genetic component of the
more common, complex variety.

Genetic linkage is a technique that identifies genes re-
sponsible for inherited traits solely based in their position on
chromosomes without prior knowledge of their product or
its function. More than two decades ago, by genetic linkage
analysis, a mutation of a gene encoding a myofibrillar protein
(β-cardiac myosin heavy chain, MYH7) was shown to
cause another cardiac disease, hypertrophic cardiomyopathy
(HCM) [1]. Since then, mutations in multiple genes encod-
ing myofibrillar proteins have been identified as responsible
for other cases of this disease and other types of cardiomy-
opathy: dilated cardiomyopathy (DCM), arrhythmogenic
right ventricular cardiomyopathy (ARVC), and restrictive
cardiomyopathy (RCM) (for a recent review, see Ghosh and
Haddad, 2011) [2].

The first genes shown to be responsible for familial cases
of CHD (NKX2-5 and GATA4) encode transcription factors.
Subsequently, mutations in genes that encode other types of
protein, like signalling and structural molecules, have been
described in families with Mendelian CHD, and common
variants have been identified as predisposing factors for non-
Mendelian CHD in large cohorts of sporadic cases (for a
review, see Wessels and Willems, 2010) [3].

Some relatively recent developments in the search for
the genetic origins of CHD were initiated by an unexpected
observation: a causative point mutation in chromosome 14
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was identified in a large family with an autosomal dominant
atrial septal defect (ASD), one of the most common forms of
CHD [4]. This mutation is located in a gene that encodes a
myofibrillar protein (α-cardiac myosin heavy chain, MYH6).
Subsequently, we and others have shown that mutations in
other genes that encode other myofibrillar proteins can cause
defective cardiac development [5–10]. Traditionally, com-
promised contractility of the cardiac muscle by the presence
of dominant-negative mutant myofibrillar proteins or their
haploinsufficiency (for nonsense mutations) was expected
to cause only functional phenotypes during postnatal life
which in turn induce a maladaptive response, as occurs
in the different types of cardiomyopathy. The unexpected
observation that mutations in these genes can also affect the
functionality of the heart during its early development and
thus induce cardiac malformation is supported by analysis of
spontaneous and induced mutations in model organisms.

In this paper, we discuss recent findings that indicate the
importance of the functionality of the myofibrils, specifically
their formation, contractility and mechanotransduction, in
several aspects of cardiogenesis.

2. Overview of Cardiac Development

Cardiac development is a complex process, by which an
initial primordium consists of a straight tube of cardiac
muscle (myocardium), lined by a single layer of endothelial
cells (endocardium) [11], bends to the right (looping) in
order to define the prospective chamber that receives blood
through the veins (primitive atrium) from the chamber
that expel blood to the arteries (primitive ventricle) [12].
The extracellular matrix that separates myocardium and
endocardium (cardiac jelly) expands to form the endo-
cardial cushions, located between the prospective atrium
and ventricle and between this and the prospective outflow
vessel [13]. The myocardium and endocardium forming the
wall of the future chambers expand (ballooning) [14] and
penetrate the interior of the chambers with ramified ridge-
like structures called trabeculae [15]. Both the primitive
atrium and ventricle are divided into right and left chambers
by atrial and ventricular septation, respectively, resulting
in the adult configuration of a right and left atria and a
right and left ventricle, and each ventricle is aligned with
its atrial counterpart [16]. Both the endocardial cushions
and the trabeculae contribute to both atrial and ventricular
septation. Additionally, the endocardial cushions condense
to form the valves between atria and ventricles and between
the ventricles and the prospective outflow vessels. Trabeculae
also form the papillary muscles that anchor the valves to the
inner surface of the ventricles [17].

3. Defective Myofibrillogenesis in the Heart
Causes Cardiac Malformation

In vivo studies in chicken and mouse have shown that
tropomodulin is an essential component of the myofibrils
required for its proper formation [18, 19]. This protein is
located in the membrane of the differentiating myocardial

cell, closely associated with spectrin [18]. Once tropomyosin
localizes within the thin filament, tropomodulin localizes in
the pointed end of the actin filament, where it is thought to
act as length stabilizer (Figure 1) [20].

Mice with targeted mutations of Tmod1 exhibit disrup-
tion of myofibrillogenesis, absence of cardiac contraction,
looping defects, trabeculation defects, thinning of the ven-
tricular wall, and impaired chamber formation [19, 21, 22].

4. Mutant Thick and Thin Filament
Proteins and Cardiogenesis: Lessons from
Animal Models

Analysis of spontaneous and experimental mutations in
animal models has highlighted the role of myofibrillar
proteins in cardiogenesis. In vertebrates, contraction of the
cardiac primordium through interaction between the thick
and thin filaments of the sarcomere occurs very early in
development, well before the circulation of blood is needed
to sustain the tissues of the embryo. It has been proposed
that this initial activity of the cardiac myofibril apparatus
functions as a stimulus for adequate heart development [23].
Deficiency of the genes encoding proteins of both the thick
and thin filaments of the sarcomere has been implicated in
cardiac malformation. For example, in the case of proteins of
the thin filament, mutations in the genes encoding cardiac
troponin t (tnnt2) and sarcomeric actin (cfk) in zebrafish
induce endocardial cushion and valve formation defects [24].
Targeted disruption of the cardiac troponin T gene (Tnnt2)
causes looping and endocardial cushion defects in mice [25].
In the case of genes encoding proteins of the thick filament,
mutation of the atrial myosin heavy chain gene (amhc)
results in deficient ventricular development [26]. Defective
atrial myosin heavy chain causes inadequate atrial septation
in chicken (MYH7) [27] and malformation of the valves
and trabeculae in the amphibian X. tropicalis (myh6) [28].
Abnormal cardiac chamber morphology, possibly due to
inadequate looping of enlarged and amorphous heart tubes,
was detected in mice with mutant atrial myosin regulatory
light chain (Myl7) gene [29].

5. Mutations of Myofibrillar Protein
Genes in CHD

The aforementioned finding by linkage that a mutation in
the α-myosin heavy chain gene (MYH6) causes a dominant
form of ASD [4] has been supported by reports of additional
mutations in the same gene in cases of ASD and other types
of CHD by us [6, 7] an others [10]. Recently, by array-
based sequence of 13 sarcomeric genes in 31 familial cases of
ASD, MYH6 was identified as the predominant sarcomeric
disease gene for ASD [10]. Additionally, mutations of the α-
cardiac actin gene (ACTC1) have been identified as causative
in other familial and sporadic cases of ASD [8]. Different
mutations of the ACTC1 gene have been found in cases of
septal defects associated with ventricular noncompaction [9]
(expansion of the trabeculated component of the ventricular
wall at the expense of its compact layer). In cases of another
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Figure 1: Schematic representation of the structures of the myofibrils responsible of contraction, sensation, and transduction of mechanical
stimuli in the developing heart. Force is generated by the thick filaments formed by myosin heavy chain (amhc, MYH6, MYH7) associated
with myosin regulatory (Myl7) and essential light chains and their interaction with the thin filaments, formed by actin (ACTC1, cfk) and
troponin T (Tnnt2), TCAP and TMOD, amongst others. Titin spans a half of the sarcomere, from the Z-Disc (where it interacts with TCAP
and MLP) to the M-band. One of its intermediate segments, the N2A-region, acts as a mechanotransducer and binds CARP, DARP, and
ANKR2. The peripheral myofibrils of the cardiomyocytes are linked to integrins embedded in the cell membrane (sarcolemma) by means of
the focal adhesion complexes of the costameres, formed by FAK ERK1 and ERK2, amongst others. In response to mechanical stimulation,
proteins bound to titin (CARP, DARP, and ANKR2), proteins of the Z-Disc (MLP, PKCε), as well as FAK, ERK1, and ERK2, located to the
focal adhesion complexes, translocate to the nucleus, where they interact with cardiac transcription factors to modify gene expression.

type of CHD (Ebstein’s anomaly) associated with ventricular
noncompaction, mutations of the β-myosin heavy chain
gene (MYH7) have been identified [5]. Other mutations
of MYH6, ACTC1, and MYH7 also cause hypertrophic and
dilated cardiomyopathy [2, 30–32].

6. Mechanotransduction of Myofibrils and
Heart Development

Besides their function in contraction, specific myofibrillar
and associated proteins can also act as sensors and trans-
ducers of the strains imposed by their own activity and
the resulting fluid dynamics. The function of some of these
mechanosensors and transducers could be relevant for car-
diac development.

Titin, the largest myofibrillar protein, spans half of the
sarcomere as it links its outer limit (the Z-band) with its
centre (the M-band). This protein is composed of a series
of springs of variable resistance that provide elasticity to the
myofibrils and also contains segments that act as mecha-
nosensors [33, 34]. The Ig-domains 180 and 181 in the N2A-
region of titin interact with three proteins of the muscle
ankyrin-repeat family, CARP (also known as ANKRD1 and a
known target of NKX2.5 [35] and other cardiac transcription

factors [36]), DARP, and Ankrd2 [37, 38]. When stretch is
applied to cardiomyocytes, CARP translocates to the nucleus,
where it interacts with transcription factors to modify gene
expression [39]. A mutation on the ANKRD1 gene that
enhances the stability and potentiates the transcriptional
repression of the cardiac specific ANF promoter was de-
scribed in a patient with total anomalous pulmonary venous
return (TAPVR, another type of CHD, where the pulmonary
vein empties in a vessel or cardiac chamber different from the
right atria). A chromosomal translocation with a breakpoint
near the ANKRD1 gene was discovered in another patient
with the same abnormality [40].

Mechanical stimuli are first transmitted to the membrane
of the cardiomyocytes (sarcolemma) through the extracel-
lular matrix. Myofibrils are bound to the membrane of
cardiomyocytes via specialized focal adhesion complexes
concentrated in the costameres. These structures link the
sarcolemma to the Z-bands of the sarcomeres that form the
peripheral myofibrils [41]. The mechanotransduction of the
focal adhesion complexes at the costameres includes phos-
phorylation of focal adhesion kinase (FAK), extracellular
signal-regulated kinases 1 and 2 (ERK1 and ERK2), and pax-
illin (PXN) (Figure 1) [42].

It has been shown that the focal adhesion complexes at
the costameres can react differentially according to the rate
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and direction of the strain applied to the cell. Prolonged
static strain over cardiomyocytes causes FAK to translocate
from the focal adhesion complex to the nucleus [42].
Transverse strain (perpendicular to the sarcomere) increases
the phosphorylation of FAK, ERK1, and ERK2 in comparison
with nonstrained cells, whereas longitudinal strain (parallel
to the sarcomere) induces the phosphorylation of ERK1 and
ERK2 but does not increase phosphorylation of FAK [42].
It has been proposed that transverse strain extends the FAK
molecule, promoting its activation by phosphorylation [43].

Deficiency of FAK in produces a general defect of meso-
derm development in mice [44] and, specifically in the devel-
oping heart, results in compromised migration of neural
crest cells to the cardiac outflow tract, which in turn induces
malformation of conotruncus [45]. However, myocardium-
specific ablation of the FAK gene induces ventricular septal
defects (VSDs) and deficient cardiomyocyte proliferation in
mice, which suggests that the role of FAK as a mechanotrans-
ducer is also important for cardiogenesis and specifically for
ventricular septation [46]. Knockdown of FAK transcripts by
antisense morpholino induced looping defects in X. laevis
[47]. Upon activation by phosphorylation, ERK1 and 2
translocate to the nucleus [48] and are known to partici-
pate in several processes important for heart development,
including FGF, BMP, and VEGF signalling [49]. Moreover,
a 1Mb microdeletion in chromosome 22q11.2 spanning the
ERK2 gene has been described in patients with VSD and PTA
[50]. Ablation of the PXN gene in mice results in abnormal
heart structure [51]. These data suggest a possible mecha-
nism by which cardiac contraction and the resulting circu-
lation of blood in early development can, in turn, promote
heart development by inducing cardiomyocyte proliferation.

In contrast, animal models of mutations of genes encod-
ing other proteins known to act as mechanosensors in the
cardiac Z-band and the costameres do not display cardiac
malformation. In response to variations in mechanical stress,
muscle LIM protein (MLP) translocates to the nucleus [52],
where it has been proposed to bind cardiac transcription
factors like GATA4 [53]. Also, it has been hypothesised
that MLP forms a complex with telethonin (TCAP) and
the N-terminal Z1 and Z2 domains of titin that acts as
a stretch sensor in cardiomyocytes [54]. Protein kinase C
epsilon (PKCε) is necessary and sufficient to induce FAK
autophosphorylation [55], and it is known to localize to
the Z-band in cardiomyocytes [56] and to translocate to
the nucleus in response to pressure overload [57], where
it has been suggested to regulate the transcription of α-
skeletal actin [58]. Humans or mice harbouring mutations
of the genes encoding MLP [54, 59], TCAP [60, 61], or PKCε
[62] do not show cardiac malformation. Further research is
required to establish why defective specific mechanosensing
pathways of the myofibrils and associated structures have a
deleterious effect in cardiogenesis and others do not.

7. Conclusions

Mutations in many genes that encode proteins involved
in the formation, contraction as well as force sensing and

transduction of the myofibrils produce phenotypes that
include impaired cardiac development in animal models and
humans. It is being increasingly recognized that the early
activity of the embryonic heart has a significant impact in the
morphogenesis of the organ. The sensing and transduction
of the forces it generates modify the gene expression of the
early myocardium, which elicits remodelling, proliferation,
and possibly apoptosis. Thus, we suggest that gene candidate
approaches designed to discover new genetic determinants
of Mendelian CHD or common variants predisposing to the
nonfamilial CHD should consider genes involved in these
signalling pathways.
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developmental components of the ventricles: their significance
in congenital cardiac malformations,” Cardiology in the Young,
vol. 1, no. 2, pp. 123–128, 1991.

[12] J. Manner, “Cardiac looping in the chick embryo: a morpho-
logical review with special reference to terminological and
biomechanical aspects of the looping process,” The Anatomical
Record, vol. 259, no. 3, pp. 248–262, 2000.

[13] A. D. Person, S. E. Klewer, and R. B. Runyan, “Cell biology
of cardiac cushion development,” International Review of
Cytology, vol. 243, pp. 287–335, 2005.

[14] V. M. Christoffels, P. E. M. H. Habets, D. Franco et al.,
“Chamber formation and morphogenesis in the developing
mammalian heart,” Developmental Biology, vol. 223, no. 2, pp.
266–278, 2000.

[15] A. Contreras-Ramos, C. Sanchez-Gomez, H. L. Garcia-
Romero, and L. O. Cimarosti, “Normal development of the
muscular region of the interventricular septum—I. The signif-
icance of the ventricular trabeculations,” Journal of Veterinary
Medicine Series C, vol. 37, no. 5, pp. 344–351, 2008.

[16] R. H. Anderson, S. Webb, N. A. Brown, W. Lamers, and A.
Moorman, “Development of the heart: (2) septation of the at-
riums and ventricles,” Heart, vol. 89, no. 8, pp. 949–958, 2003.

[17] M. L. Kirby, “An overview of cardiac morphogenesis: getting
from a muscle-covered tube to a four-chmaberes pump,” in
Cardiac Development, pp. 3–8, Oxford University Press,
Oxford, UK, 2007.

[18] E. Ehler, V. M. Fowler, and J. C. Perriard, “Myofibrillogenesis
in the developing chicken heart: role of actin isoforms and of
the pointed end actin capping protein tropomodulin during
thin filament assembly,” Developmental Dynamics, vol. 229,
no. 4, pp. 745–755, 2004.

[19] K. L. Fritz-Six, P. R. Cox, R. S. Fischer et al., “Aberrant myo-
fibril assembly in tropomodulin1 null mice leads to aborted
heart development and embryonic lethality,” Journal of Cell
Biology, vol. 163, no. 5, pp. 1033–1044, 2003.

[20] C. C. Gregorio and V. M. Fowler, “Mechanisms of thin
filament assembly in embryonic chick cardiac myocytes: tro-
pomodulin requires tropomyosin for assembly,” Journal of Cell
Biology, vol. 129, no. 3, pp. 683–695, 1995.

[21] C. R. McKeown, R. B. Nowak, J. Moyer, M. A. Sussman, and
V. M. Fowler, “Tropomodulin1 is required in the heart but not
the yolk sac for mouse embryonic development,” Circulation
Research, vol. 103, no. 11, pp. 1241–1248, 2008.

[22] X. Chu, J. Chen, M. C. Reedy, C. Vera, K. L. P. Sung, and L. A.
Sung, “E-Tmod capping of actin filaments at the slow-growing
end is required to establish mouse embryonic circulation,”
American Journal of Physiology, vol. 284, no. 5, pp. H1827–
H1838, 2003.

[23] W. W. Burggren, “What is the purpose of the embryonic heart
beat? Or how facts can ultimately prevail over physiological
dogma,” Physiological and Biochemical Zoology, vol. 77, no. 3,
pp. 333–345, 2004.

[24] T. Bartman, E. C. Walsh, K. K. Wen et al., “Early myocardial
function affects endocardial cushion development in zebra-
fish,” PLoS Biology, vol. 2, no. 5, article E129, 2004.

[25] K. Nishii, S. Morimoto, R. Minakami et al., “Targeted dis-
ruption of the cardiac troponin T gene causes sarcomere dis-
assembly and defects in heartbeat within the early mouse
embryo,” Developmental Biology, vol. 322, no. 1, pp. 65–73,
2008.

[26] E. Berdougo, H. Coleman, D. H. Lee, D. Y. R. Stainier,
and D. Yelon, “Mutation of weak atrium/atrial myosin heavy
chain disrupts atrial function and influences ventricular

morphogenesis in zebrafish,” Development, vol. 130, no. 24,
pp. 6121–6129, 2003.

[27] C. Rutland, L. Warner, A. Thorpe et al., “Knockdown of alpha
myosin heavy chain disrupts the cytoskeleton and leads to
multiple defects during chick cardiogenesis,” Journal of Ana-
tomy, vol. 214, no. 6, pp. 905–915, 2009.

[28] A. Abu-Daya, A. K. Sater, D. E. Wells, T. J. Mohun, and L. B.
Zimmerman, “Absence of heartbeat in the Xenopus tropicalis
mutation muzak is caused by a nonsense mutation in cardiac
myosin myh6,” Developmental Biology, vol. 336, no. 1, pp. 20–
29, 2009.

[29] C. Huang, F. Sheikh, M. Hollander et al., “Embryonic atrial
function is essential for mouse embryogenesis, cardiac mor-
phogenesis and angiogenesis,” Development, vol. 130, no. 24,
pp. 6111–6119, 2003.

[30] E. Carniel, M. R. G. Taylor, G. Sinagra et al., “α-Myosin
heavy chain: a sarcomeric gene associated with dilated and
hypertrophic phenotypes of cardiomyopathy,” Circulation, vol.
112, no. 1, pp. 54–59, 2005.

[31] R. E. Hershberger, N. Norton, A. Morales, D. Li, J. D. Siegfried,
and J. Gonzalez-Quintana, “Coding sequence rare variants
identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3
from 312 patients with familial or idiopathic dilated cardiomy-
opathy,” Circulation, vol. 3, no. 2, pp. 155–161, 2010.

[32] H. Niimura, K. K. Patton, W. J. McKenna et al., “Sarcomere
protein gene mutations in hypertrophic cardiomyopathy of
the elderly,” Circulation, vol. 105, no. 4, pp. 446–451, 2002.

[33] S. Labeit and B. Kolmerer, “Titins: giant proteins in charge
of muscle ultrastructure and elasticity,” Science, vol. 270, no.
5234, pp. 293–296, 1995.

[34] W. A. Linke, “Sense and stretchability: the role of titin and
titin-associated proteins in myocardial stress-sensing and
mechanical dysfunction,” Cardiovascular Research, vol. 77, no.
4, pp. 637–648, 2008.

[35] Y. Zou, S. Evans, J. Chen, H. C. Kuo, R. P. Harvey, and K.
R. Chien, “CARP, a cardiac ankyrin repeat protein, is down-
stream in the Nkx2-5 homeobox gene pathway,” Development,
vol. 124, no. 4, pp. 793–804, 1997.

[36] A. T. Mikhailov and M. Torrado, “The enigmatic role of
the ankyrin repeat domain 1 gene in heart development and
disease,” International Journal of Developmental Biology, vol.
52, no. 7, pp. 811–821, 2008.

[37] M. K. Miller, M. L. Bang, C. C. Witt et al., “The muscle ankyrin
repeat proteins: CARP, ankrd2/Arpp and DARP as a family
of titin filament-based stress response molecules,” Journal of
Molecular Biology, vol. 333, no. 5, pp. 951–964, 2003.

[38] C. C. Witt, Y. Ono, E. Puschmann et al., “Induction and
myofibrillar targeting of CARP, and suppression of the Nkx2.
5 pathway in the MDM mouse with impaired titin-based
signaling,” Journal of Molecular Biology, vol. 336, no. 1, pp.
145–154, 2004.

[39] S. Kojic, A. Nestorovic, L. Rakicevic et al., “A novel role for
cardiac ankyrin repeat protein Ankrd1/CARP as a co-activator
of the p53 tumor suppressor protein,” Archives of Biochemistry
and Biophysics, vol. 502, no. 1, pp. 60–67, 2010.

[40] R. Cinquetti, I. Badi, M. Campione et al., “Transcriptional
deregulation and a missense mutation define ANKRD1 as a
candidate gene for total anomalous pulmonary venous re-
turn,” Human Mutation, vol. 29, no. 4, pp. 468–474, 2008.

[41] A. M. Samarel, “Costameres, focal adhesions, and cardiomy-
ocyte mechanotransduction,” American Journal of Physiology,
vol. 289, no. 6, pp. H2291–H2301, 2005.

[42] S. E. Senyo, Y. E. Koshman, and B. Russell, “Stimulus interval,
rate and direction differentially regulate phosphorylation for



6 Biochemistry Research International

mechanotransduction in neonatal cardiac myocytes,” The
FEBS Letters, vol. 581, no. 22, pp. 4241–4247, 2007.

[43] B. Russell, M. W. Curtis, Y. E. Koshman, and A. M. Samarel,
“Mechanical stress-induced sarcomere assembly for cardiac
muscle growth in length and width,” Journal of Molecular and
Cellular Cardiology, vol. 48, no. 5, pp. 817–823, 2010.

[44] D. Ilic, Y. Furuta, S. Kanazawa et al., “Reduced cell motility
and enhanced focal adhesion contact formation in cells from
FAK-deficient mice,” Nature, vol. 377, no. 6549, pp. 539–544,
1995.

[45] A. Vallejo-Illarramendi, K. Zang, and L. F. Reichardt, “Focal
adhesion kinase is required for neural crest cell morphogenesis
during mouse cardiovascular development,” Journal of Clinical
Investigation, vol. 119, no. 8, pp. 2218–2230, 2009.

[46] X. Peng, X. Wu, J. E. Druso et al., “Cardiac developmental
defects and eccentric right ventricular hypertrophy in car-
diomyocyte focal adhesion kinase (FAK) conditional knockout
mice,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 105, no. 18, pp. 6638–6643, 2008.

[47] J. T. Doherty, F. L. Conlon, C. P. Mack, and J. M. Taylor,
“Focal adhesion kinase is essential for cardiac looping and
multichamber heart formation,” Genesis, vol. 48, no. 8, pp.
492–504, 2010.

[48] D. S. Lidke, F. Huang, J. N. Post et al., “ERK nuclear translo-
cation is dimerization-independent but controlled by the rate
of phosphorylation,” The Journal of Biological Chemistry, vol.
285, no. 5, pp. 3092–3102, 2010.

[49] B. A. Rose, T. Force, and Y. Wang, “Mitogen-activated protein
kinase signaling in the heart: angels versus demons in a heart-
breaking tale,” Physiological Reviews, vol. 90, no. 4, pp. 1507–
1546, 2010.

[50] J. Newbern, J. Zhong, S. R. Wickramasinghe et al., “Mouse and
human phenotypes indicate a critical conserved role for ERK2
signaling in neural crest development,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 105, no. 44, pp. 17115–17120, 2008.

[51] M. Hagel, E. L. George, A. Kim et al., “The adaptor protein
paxillin is essential for normal development in the mouse and
is a critical transducer of fibronectin signaling,” Molecular and
Cellular Biology, vol. 22, no. 3, pp. 901–915, 2002.

[52] S. Y. Boateng, S. E. Senyo, L. Qi, P. H. Goldspink, and B.
Russell, “Myocyte remodeling in response to hypertrophic
stimuli requires nucleocytoplasmic shuttling of muscle LIM
protein,” Journal of Molecular and Cellular Cardiology, vol. 47,
no. 4, pp. 426–435, 2009.

[53] B. Buyandelger, K. E. Ng, S. Miocic et al., “MLP (muscle LIM
protein) as a stress sensor in the heart,” Pflugers Archiv Euro-
pean Journal of Physiology, vol. 462, no. 1, pp. 135–142, 2011.

[54] R. Knoll, M. Hoshijima, H. M. Hoffman et al., “The cardiac
mechanical stretch sensor machinery involves a Z disc com-
plex that is defective in a subset of human dilated cardio-
myopathy,” Cell, vol. 111, no. 7, pp. 943–955, 2002.

[55] M. C. Heidkamp, A. L. Bayer, B. T. Scully, D. M. Eble, and A.
M. Samarel, “Activation of focal adhesion kinase by protein
kinase Cε in neonatal rat ventricular myocytes,” American
Journal of Physiology, vol. 285, no. 4, pp. H1684–H1696, 2003.

[56] S. L. Robia, J. Ghanta, V. G. Robu, and J. W. Walker, “Local-
ization and kinetics of protein kinase C-epsilon anchoring in
cardiac myocytes,” Biophysical Journal, vol. 80, no. 5, pp. 2140–
2151, 2001.

[57] X. Gu and S. P. Bishop, “Increased protein kinase C and iso-
zyme redistribution in pressure-overload cardiac hypertrophy
in the rat,” Circulation Research, vol. 75, no. 5, pp. 926–931,
1994.

[58] G. Wu, T. Toyokawa, H. Hahn, and G. W. Dorn, “ε Protein
kinase C in pathological myocardial hypertrophy. Analysis by
combined transgenic expression of translocation modifiers
and Gα(q),” The Journal of Biological Chemistry, vol. 275, no.
39, pp. 29927–29930, 2000.

[59] S. Arber, J. J. Hunter, J. Ross Jr. et al., “MLP-deficient mice
exhibit a disruption of cardiac cytoarchitectural organization,
dilated cardiomyopathy, and heart failure,” Cell, vol. 88, no. 3,
pp. 393–403, 1997.

[60] C. D. Markert, M. P. Meaney, K. A. Voelker et al., “Functional
muscle analysis of the Tcap knockout mouse,” Human Molecu-
lar Genetics, vol. 19, no. 11, Article ID ddq105, pp. 2268–2283,
2010.

[61] E. S. Moreira, T. J. Wiltshire, G. Faulkner et al., “Limb-
girdle muscular dystrophy type 2G is caused by mutations in
the gene encoding the sarcomeric protein telethonin,” Nature
Genetics, vol. 24, no. 2, pp. 163–166, 2000.

[62] A. Castrillo, D. J. Pennington, F. Otto, P. J. Parker, M. J. Owen,
and L. Bosca, “Protein kinase Cε is required for macrophage
activation and defense against bacterial infection,” Journal of
Experimental Medicine, vol. 194, no. 9, pp. 1231–1242, 2001.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


