161 research outputs found
Junctional sarcoplasmic reticulum motility in adult mouse ventricular myocytes.
Excitation-contraction (EC) coupling is the coordinated process by which an action potential triggers cardiac myocyte contraction. EC coupling is initiated in dyads where the junctional sarcoplasmic reticulum (jSR) is in tight proximity to the sarcolemma of cardiac myocytes. Existing models of EC coupling critically depend on dyad stability to ensure the fidelity and strength of EC coupling, where even small variations in ryanodine receptor channel and voltage-gated calcium channel-α 1.2 subunit separation dramatically alter EC coupling. However, dyadic motility has never been studied. Here, we developed a novel strategy to track specific jSR units in dissociated adult ventricular myocytes using photoactivatable fluorescent proteins. We found that the jSR is not static. Instead, we observed dynamic formation and dissolution of multiple dyadic junctions regulated by the microtubule-associated molecular motors kinesin-1 and dynein. Our data support a model where reproducibility of EC coupling results from the activation of a temporally averaged number of SR Ca2+ release units forming and dissolving SR-sarcolemmal junctions. These findings challenge the long-held view that the jSR is an immobile structure and provide insights into the mechanisms underlying its motility
the case of Agelastes meleagrides, a western African forest endemic
The data analyzed during the current study are available in the following databases: the Global Biodiversity Information Facility (GBIF; https ://www.gbif.org). Data from surveys in Sapo National Park in Liberia and Gola Rainforest National Park in Sierra Leone are available from the corresponding author on reasonable request. Environmental datasets are available at https ://terra .nasa.gov/data and http://www.worldclim.org.Background:Understanding geographic distributions of species is a crucial step in spatial planning for biodiversity conservation, particularly as regards changes in response to global climate change. This information is especially important for species of global conservation concern that are susceptible to the effects of habitat loss and climate change. In this study, we used ecological niche modeling to assess the current and future geographic distributional potential of White‑breasted Guineafowl (Agelastes meleagrides) (Vulnerable) across West Africa.Methods:We used primary occurrence data obtained from the Global Biodiversity Information Facility and national parks in Liberia and Sierra Leone, and two independent environmental datasets (Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index at 250 m spatial resolution, and Worldclim climate data at 2.5′ spatial resolution for two representative concentration pathway emissions scenarios and 27 general circulation models for 2050) to build ecological niche models in Maxent.Results:From the projections, White‑breasted Guineafowl showed a broader potential distribution across the region compared to the current IUCN range estimate for the species. Suitable areas were concentrated in the Gola rainforests in northwestern Liberia and southeastern Sierra Leone, the Tai‑Sapo corridor in southeastern Liberia and southwest‑ern Côte d’Ivoire, and the Nimba Mountains in northern Liberia, southeastern Guinea, and northwestern Côte d’Ivoire. Future climate‑driven projections anticipated minimal range shifts in response to climate change.Conclusions:By combining remotely sensed data and climatic data, our results suggest that forest cover, rather than climate is the major driver of the species’ current distribution. Thus, conservation efforts should prioritize forest protec‑tion and mitigation of other anthropogenic threats (e.g. hunting pressure) affecting the species.Conservation InternationalGlobal Environment Facility-funded Grant # GEF-581
Threat history controls flexible escape behavior in mice.
In many instances, external sensory-evoked neuronal activity is used by the brain to select the most appropriate behavioral response. Predator-avoidance behaviors such as freezing and escape1,2 are of particular interest since these stimulus-evoked responses are behavioral manifestations of a decision-making process that is fundamental to survival.3,4 Over the lifespan of an individual, however, the threat value of agents in the environment is believed to undergo constant revision,5 and in some cases, repeated avoidance of certain stimuli may no longer be an optimal behavioral strategy.6 To begin to study this type of adaptive control of decision-making, we devised an experimental paradigm to probe the properties of threat escape in the laboratory mouse Mus musculus. First, we found that while robust escape to visual looming stimuli can be observed after 2 days of social isolation, mice can also rapidly learn that such stimuli are non-threatening. This learned suppression of escape (LSE) is extremely robust and can persist for weeks and is not a generalized adaptation, since flight responses to novel live prey and auditory threat stimuli in the same environmental context were maintained. We also show that LSE cannot be explained by trial number or a simple form of stimulus desensitization since it is dependent on threat-escape history. We propose that the action selection process mediating escape behavior is constantly updated by recent threat history and that LSE can be used as a robust model system to understand the neurophysiological mechanisms underlying experience-dependent decision-making
What you know can influence what you are going to know (especially for older adults)
Stimuli related to an individual's knowledge/experience are often more memorable than abstract stimuli, particularly for older adults. This has been found when material that is congruent with knowledge is contrasted with material that is incongruent with knowledge, but there is little research on a possible graded effect of congruency. The present study manipulated the degree of congruency of study material with participants’ knowledge. Young and older participants associated two famous names to nonfamous faces, where the similarity between the nonfamous faces and the real famous individuals varied. These associations were incrementally easier to remember as the name-face combinations became more congruent with prior knowledge, demonstrating a graded congruency effect, as opposed to an effect based simply on the presence or absence of associations to prior knowledge. Older adults tended to show greater susceptibility to the effect than young adults, with a significant age difference for extreme stimuli, in line with previous literature showing that schematic support in memory tasks particularly benefits older adults
Quantification of gas, ash, and sulphate aerosols in volcanic plumes from open path Fourier transform infrared (OP-FTIR) emission measurements at Stromboli volcano, Italy
Field-portable Open Path Fourier Transform Infrared (OP-FTIR) spectrometers can be used to remotely measure the composition of volcanic plumes using absorption spectroscopy, providing invaluable data on total gas emissions. Quantifying the temporal evolution of gas compositions during an eruption helps develop models of volcanic processes and aids in eruption forecasting. Absorption measurements require a viewing geometry which aligns infrared source, plume, and instrument, which can be challenging. Here, we present a fast retrieval algorithm to estimate quantities of gas, ash and sulphate aerosols from thermal emission OP-FTIR measurements, and the results from two pilot campaigns on Stromboli volcano in Italy in 2019 and 2021. We validate the method by comparing time series of SO2 slant column densities retrieved using our method with those obtained from a conventional UV spectrometer, demonstrating that the two methods generally agree to within a factor of 2. The algorithm correctly identifies ash-rich plumes and gas bursts associated with explosions and quantifies the mass column densities and particle sizes of ash and sulphate aerosols (SA) in the plume. We compare the ash sizes retrieved using our method with the particle size distribution (PSD) of an ash sample collected during the period of measurements in 2019 by flying a Remotely Piloted Aircraft System into the path of a drifting ash plume and find that both modes of the bimodal PSD (a fine fraction with diameter around 5–10 μm and a coarse fraction around 65 μm) are identified within our datasets at different times. We measure a decrease in the retrieved ash particle size with distance downwind, consistent with settling of larger particles, which we also observed visually. We measure a decrease in the SO2/SA ratio as the plume travels downwind, coupled with an increase in measured SA particle size (range 2–6 μm), suggesting rapid hygroscopic particle growth and/or SO2 oxidation. We propose that infrared emission spectroscopy can be used to examine physical and chemical changes during plume transport and opens the possibility of remote night-time monitoring of volcanic plume emissions. These ground-based analyses may also aid the refinement of satellite-based aerosol retrievals
Ubiquitin activation is essential for schizont maturation in Plasmodium falciparum blood-stage development
Ubiquitylation is a common post translational modification of eukaryotic proteins and in the human malaria parasite, Plasmodium falciparum (Pf) overall ubiquitylation increases in the transition from intracellular schizont to extracellular merozoite stages in the asexual blood stage cycle. Here, we identify specific ubiquitylation sites of protein substrates in three intraerythrocytic parasite stages and extracellular merozoites; a total of 1464 sites in 546 proteins were identified (data available via ProteomeXchange with identifier PXD014998). 469 ubiquitylated proteins were identified in merozoites compared with only 160 in the preceding intracellular schizont stage, suggesting a large increase in protein ubiquitylation associated with merozoite maturation. Following merozoite invasion of erythrocytes, few ubiquitylated proteins were detected in the first intracellular ring stage but as parasites matured through trophozoite to schizont stages the apparent extent of ubiquitylation increased. We identified commonly used ubiquitylation motifs and groups of ubiquitylated proteins in specific areas of cellular function, for example merozoite pellicle proteins involved in erythrocyte invasion, exported proteins, and histones. To investigate the importance of ubiquitylation we screened ubiquitin pathway inhibitors in a parasite growth assay and identified the ubiquitin activating enzyme (UBA1 or E1) inhibitor MLN7243 (TAK-243) to be particularly effective. This small molecule was shown to be a potent inhibitor of recombinant PfUBA1, and a structural homology model of MLN7243 bound to the parasite enzyme highlights avenues for the development of P. falciparum specific inhibitors. We created a genetically modified parasite with a rapamycin-inducible functional deletion of uba1; addition of either MLN7243 or rapamycin to the recombinant parasite line resulted in the same phenotype, with parasite development blocked at the schizont stage. Nuclear division and formation of intracellular structures was interrupted. These results indicate that the intracellular target of MLN7243 is UBA1, and this activity is essential for the final differentiation of schizonts to merozoites
Aerosol indirect effects
Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs)
is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (tau a) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. cloud droplet number concentration (N d) compares relatively well to the satellite data at least over the ocean. The relationship between (tau a) and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and tau a as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld–tau a relationship, our results indicate that none can be identified as a unique explanation. Relationships similar
to the ones found in satellite data between tau a and cloud top
temperature or outgoing long-wave radiation (OLR) are simulated
by only a few GCMs. The GCMs that simulate a negative OLR - tau a relationship show a strong positive correlation between tau a and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of tau a, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good
predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of −1.5±0.5Wm−2. In an alternative approach, the radiative flux perturbation due to anthropogenic
aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clearand cloudy-sky forcings with estimates of anthropogenic tau a
and satellite-retrieved Nd–tau a regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of −0.4±0.2Wm−2 and a cloudy-sky (aerosol indirect effect) estimate of −0.7±0.5Wm−2, with a total estimate of −1.2±0.4Wm−2
The DECRYPT trial: Study protocol for a phase II randomised controlled trial of cognitive therapy for post-traumatic stress disorder (PTSD) in youth exposed to multiple traumatic stressors
Background: Post-traumatic stress disorder (PTSD) is a distressing and disabling condition that affects significant numbers of children and adolescents. Youth exposed to multiple traumas (eg, abuse, domestic violence) are at particular risk of developing PTSD. Cognitive therapy for PTSD (CT-PTSD), derived from adult work, is a theoretically informed, disorder-specific form of trauma-focused cognitive–behavioural therapy. While efficacious for child and adolescent single-event trauma samples, its effectiveness in routine settings with more complex, multiple trauma-exposed youth has not been established. The Delivery of Cognitive Therapy for Young People after Trauma randomised controlled trial (RCT) examines the effectiveness of CT-PTSD for treating PTSD following multiple trauma exposure in children and young people in comparison with treatment as usual (TAU). Methods/design: This protocol describes a two-arm, patient-level, single blind, superiority RCT comparing CT-PTSD (n=60) with TAU (n=60) in children and young people aged 8–17 years with a diagnosis of PTSD following multiple trauma exposure. The primary outcome is PTSD severity assessed using the Children’s Revised Impact of Event Scale (8-item version) at post-treatment (ie, approximately 5 months post-randomisation). Secondary outcomes include structured interview assessment for PTSD, complex PTSD symptoms, depression and anxiety, overall functioning and parent-rated mental health. Mid-treatment and 11-month and 29-month post-randomisation assessments will also be completed. Process–outcome evaluation will consider which mechanisms underpin or moderate recovery. Qualitative interviews with the young people, their families and their therapists will be undertaken. Cost-effectiveness of CT-PTSD relative to TAU will be also be assessed. Ethics and dissemination: This trial protocol has been approved by a UK Health Research Authority Research Ethics Committee (East of England–Cambridge South, 16/EE/0233). Findings will be disseminated broadly via peer-reviewed empirical journal articles, conference presentations and clinical workshops. Trial registration: ISRCTN12077707. Registered 24 October 2016 (http://www.isrctn.com/ISRCTN12077707). Trial recruitment commenced on 1 February 2017. It is anticipated that recruitment will continue until June 2021, with 11-month assessments being concluded in May 2022
IL-1β Suppresses Innate IL-25 and IL-33 Production and Maintains Helminth Chronicity.
Approximately 2 billion people currently suffer from intestinal helminth infections, which are typically chronic in nature and result in growth retardation, vitamin A deficiency, anemia and poor cognitive function. Such chronicity results from co-evolution between helminths and their mammalian hosts; however, the molecular mechanisms by which these organisms avert immune rejection are not clear. We have found that the natural murine helminth, Heligmosomoides polygyrus bakeri (Hp) elicits the secretion of IL-1β in vivo and in vitro and that this cytokine is critical for shaping a mucosal environment suited to helminth chronicity. Indeed in mice deficient for IL-1β (IL-1β(-/-)), or treated with the soluble IL-1βR antagonist, Anakinra, helminth infection results in enhanced type 2 immunity and accelerated parasite expulsion. IL-1β acts to decrease production of IL-25 and IL-33 at early time points following infection and parasite rejection was determined to require IL-25. Taken together, these data indicate that Hp promotes the release of host-derived IL-1β that suppresses the release of innate cytokines, resulting in suboptimal type 2 immunity and allowing pathogen chronicity
BHPR research: qualitative1. Complex reasoning determines patients' perception of outcome following foot surgery in rheumatoid arhtritis
Background: Foot surgery is common in patients with RA but research into surgical outcomes is limited and conceptually flawed as current outcome measures lack face validity: to date no one has asked patients what is important to them. This study aimed to determine which factors are important to patients when evaluating the success of foot surgery in RA Methods: Semi structured interviews of RA patients who had undergone foot surgery were conducted and transcribed verbatim. Thematic analysis of interviews was conducted to explore issues that were important to patients. Results: 11 RA patients (9 ♂, mean age 59, dis dur = 22yrs, mean of 3 yrs post op) with mixed experiences of foot surgery were interviewed. Patients interpreted outcome in respect to a multitude of factors, frequently positive change in one aspect contrasted with negative opinions about another. Overall, four major themes emerged. Function: Functional ability & participation in valued activities were very important to patients. Walking ability was a key concern but patients interpreted levels of activity in light of other aspects of their disease, reflecting on change in functional ability more than overall level. Positive feelings of improved mobility were often moderated by negative self perception ("I mean, I still walk like a waddling duck”). Appearance: Appearance was important to almost all patients but perhaps the most complex theme of all. Physical appearance, foot shape, and footwear were closely interlinked, yet patients saw these as distinct separate concepts. Patients need to legitimize these feelings was clear and they frequently entered into a defensive repertoire ("it's not cosmetic surgery; it's something that's more important than that, you know?”). Clinician opinion: Surgeons' post operative evaluation of the procedure was very influential. The impact of this appraisal continued to affect patients' lasting impression irrespective of how the outcome compared to their initial goals ("when he'd done it ... he said that hasn't worked as good as he'd wanted to ... but the pain has gone”). Pain: Whilst pain was important to almost all patients, it appeared to be less important than the other themes. Pain was predominately raised when it influenced other themes, such as function; many still felt the need to legitimize their foot pain in order for health professionals to take it seriously ("in the end I went to my GP because it had happened a few times and I went to an orthopaedic surgeon who was quite dismissive of it, it was like what are you complaining about”). Conclusions: Patients interpret the outcome of foot surgery using a multitude of interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than other factors in the overall outcome of the surgery. Future research into foot surgery should incorporate the complexity of how patients determine their outcome Disclosure statement: All authors have declared no conflicts of interes
- …