41 research outputs found

    Melting of a Two-component Source beneath Iceland

    Get PDF
    New trace element and Hf-Nd isotope data on post-glacial basalts from Iceland's main rift zones are used in conjunction with literature data to evaluate the relative importance of source heterogeneity and the melting process for the final melt composition. Correlations between Hf and Nd isotope compositions and trace element ratios indicate that at least two source components are sampled systematically as a function of the degree and pressure of melting beneath Iceland. Strong depletion in Rb, Ba, U and Th and enrichment in Nb and Ta compared with La in the most enriched samples from the Reykjanes Peninsula and Western Rift Zone suggests that the enriched source component is similar to ancient recycled enriched mid-ocean ridge basalt (E-MORB) crust. Highly incompatible trace element ratios such as Nb/La and Nb/U and Pb isotope ratios are variable across Iceland. This observation suggests that either the enriched component is intrinsically heterogeneous, or that there is a larger proportion of the enriched source component beneath the Southwestern Rift Zone compared with the Northern Rift Zone. The relative effect of source heterogeneity and melting on the final melt composition was evaluated with a one-dimensional polybaric melt mixing model in which accumulated melts from a depleted MORB mantle and a recycled E-MORB crust are mixed in different ways. Two styles of melt mixing were simulated: (1) complete mixing of melts with variable proportions of the depleted mantle and recycled E-MORB components; (2) incomplete mixing with a fixed initial proportion of the two source components. Calculated pressure-dependent compositional changes using these simple two-component melting models can explain the observed trends in trace element ratio and isotope ratio diagrams for Icelandic basalts, even in cases where conventional binary mixing models would require more than two source components. The example of Iceland demonstrates that melt mixing during extraction from the mantle is a key process for controlling the trace element and isotope variability observed in basaltic lavas and must be evaluated before inferring the presence of multiple source component

    Effects of variable magma supply on mid-ocean ridge eruptions : constraints from mapped lava flow fields along the Galápagos Spreading Center

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q08014, doi:10.1029/2012GC004163.Mapping and sampling of 18 eruptive units in two study areas along the Galápagos Spreading Center (GSC) provide insight into how magma supply affects mid-ocean ridge (MOR) volcanic eruptions. The two study areas have similar spreading rates (53 versus 55 mm/yr), but differ by 30% in the time-averaged rate of magma supply (0.3 × 106 versus 0.4 × 106 m3/yr/km). Detailed geologic maps of each study area incorporate observations of flow contacts and sediment thickness, in addition to sample petrology, geomagnetic paleointensity, and inferences from high-resolution bathymetry data. At the lower-magma-supply study area, eruptions typically produce irregularly shaped clusters of pillow mounds with total eruptive volumes ranging from 0.09 to 1.3 km3. At the higher-magma-supply study area, lava morphologies characteristic of higher effusion rates are more common, eruptions typically occur along elongated fissures, and eruptive volumes are an order of magnitude smaller (0.002–0.13 km3). At this site, glass MgO contents (2.7–8.4 wt. %) and corresponding liquidus temperatures are lower on average, and more variable, than those at the lower-magma-supply study area (6.2–9.1 wt. % MgO). The differences in eruptive volume, lava temperature, morphology, and inferred eruption rates observed between the two areas along the GSC are similar to those that have previously been related to variable spreading rates on the global MOR system. Importantly, the documentation of multiple sequences of eruptions at each study area, representing hundreds to thousands of years, provides constraints on the variability in eruptive style at a given magma supply and spreading rate.This work was supported by the National Science Foundation grants OCE08–49813, OCE08–50052, and OCE08– 49711.2013-02-2

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF
    Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt.%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–84 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An_78–An_92, Mg#_cpx = 82–87, Fo_79.5–Fo_87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An_60–An_68, Mg#_cpx = 71–78, Fo_70–Fo_76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Yb_melt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Yb_melt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal-melt equilibration within the evolved assemblage occurred at ~1140°C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300°C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene-melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene-melt equilibria return mid-crustal pressures of 4±1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO_2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO_2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral-melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.D.A.N. was supported by a Natural Environment Research Council studentship (NE/1528277/1) at the start of this project. SIMS analyses were supported by Natural Environment Research Council Ion Microprobe Facility award (IMF508/1013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00410-015-1170-

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF

    The link between volcanism and deglaciation in Iceland

    No full text
    International audienceTemporal variation in the eruption rate and lava composition in the rift zones of Iceland is associated with deglaciation. Average eruption rates after the end of the last glacial period, ∼12 kyr BP, were up to 100 times higher than those from both the glacial period and recent times (50 m yr-1

    Kristallstruktur von Pt5Se4

    No full text

    Corrigendum to “Recycling of crustal material by the Iceland mantle plume: New evidence from nitrogen elemental and isotope systematics of subglacial basalts” [Geochim. Cosmochim. Acta 176 (2016) 206–226]

    No full text
    In Table 1 of the above published paper, N2/40Ar* ratios (column 13) are incorrect. A corrected table and updated figures (Figs. 6–8) are shown below. The correct N2/40Ar* values vary between 178 and 2.6 X 10^4, with a mean of 4.1 ± 2.1 (X10^3). Although this range in N2/40Ar* ratios is somewhat smaller compared to what was reported, it still displays considerably more heterogeneity compared to the DMM database. The new mean value is also significantly higher than the DMM mean (138 ± 65), as discussed. Therefore, the findings in the paper concerning heterogeneous and elevated N2/40Ar* ratios in Icelandic subglacial basalts still stand

    Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes

    No full text
    International audienceWe report new carbon dioxide (CO2) abundance and isotope data for 71 geothermal gases and fluids from both high-temperature (HT > 150 °C at 1 km depth) and low-temperature (LT < 150 °C at 1 km depth) geothermal systems located within neovolcanic zones and older segments of the Icelandic crust, respectively. These data are supplemented by CO2 data obtained by stepped heating of 47 subglacial basaltic glasses collected from the neovolcanic zones. The sample suite has been characterized previously for He–Ne (geothermal) and He–Ne–Ar (basalt) systematics (Füri et al., 2010), allowing elemental ratios to be calculated for individual samples. Geothermal fluids are characterized by a wide range in carbon isotope ratios (δ13C), from −18.8‰ to +4.6‰ (vs. VPDB), and CO2/3He values that span eight orders of magnitude, from 1 × 104 to 2 × 1012. Extreme geothermal values suggest that original source compositions have been extensively modified by hydrothermal processes such as degassing and/or calcite precipitation. Basaltic glasses are also characterized by a wide range in δ13C values, from −27.2‰ to −3.6‰, whereas CO2/3He values span a narrower range, from 1 × 108 to 1 × 1012. The combination of both low δ13C values and low CO2 contents in basalts indicates that magmas are extensively and variably degassed. Using an equilibrium degassing model, we estimate that pre-eruptive basaltic melts beneath Iceland contain ∼531 ± 64 ppm CO2 with δ13C values of −2.5 ± 1.1‰, in good agreement with estimates from olivine-hosted melt inclusions (Metrich et al., 1991) and depleted MORB mantle (DMM) CO2 source estimates (Marty, 2012). In addition, pre-eruptive CO2 compositions are estimated for individual segments of the Icelandic axial rift zones, and show a marked decrease from north to south (Northern Rift Zone = 550 ± 66 ppm; Eastern Rift Zone = 371 ± 45 ppm; Western Rift Zone = 206 ± 24 ppm). Notably, these results are model dependent, and selection of a lower δ13C fractionation factor will result in lower source estimates and larger uncertainties associated with the initial δ13C estimate. Degassing can adequately explain low CO2 contents in basalts; however, degassing alone is unlikely to generate the entire spectrum of observed δ13C variations, and we suggest that melt–crust interaction, involving a low δ13C component, may also contribute to observed signatures. Using representative samples, the CO2 flux from Iceland is estimated using three independent methods: (1) combining measured CO2/3He values (in gases and basalts) with 3He flux estimates (Hilton et al., 1990), (2) merging basaltic emplacement rates of Iceland with pre-eruptive magma source estimates of ∼531 ± 64 ppm CO2, and (3) combining fluid CO2 contents with estimated regional fluid discharge rates. These methods yield CO2 flux estimates from of 0.2–23 × 1010 mol a−1, which represent ∼0.1–10% of the estimated global ridge flux (2.2 × 1012 mol a−1; Marty and Tolstikhin, 1998)

    Corrigendum to “Recycling of crustal material by the Iceland mantle plume: New evidence from nitrogen elemental and isotope systematics of subglacial basalts” [Geochim. Cosmochim. Acta 176 (2016) 206–226]

    No full text
    In Table 1 of the above published paper, N2/40Ar* ratios (column 13) are incorrect. A corrected table and updated figures (Figs. 6–8) are shown below. The correct N2/40Ar* values vary between 178 and 2.6 X 10^4, with a mean of 4.1 ± 2.1 (X10^3). Although this range in N2/40Ar* ratios is somewhat smaller compared to what was reported, it still displays considerably more heterogeneity compared to the DMM database. The new mean value is also significantly higher than the DMM mean (138 ± 65), as discussed. Therefore, the findings in the paper concerning heterogeneous and elevated N2/40Ar* ratios in Icelandic subglacial basalts still stand
    corecore