8 research outputs found

    Large scale dynamics of the Persistent Turning Walker model of fish behavior

    Get PDF
    International audienceThis paper considers a new model of individual displacement, based on fish motion, the so-called Persistent Turning Walker (PTW) model, which involves an Ornstein-Uhlenbeck process on the curvature of the particle trajectory. The goal is to show that its large time and space scale dynamics is of diffusive type, and to provide an analytic expression of the diffusion coefficient. Two methods are investigated. In the first one, we compute the large time asymptotics of the variance of the individual stochastic trajectories. The second method is based on a diffusion approximation of the kinetic formulation of these stochastic trajectories. The kinetic model is a Fokker-Planck type equation posed in an extended phase-space involving the curvature among the kinetic variables. We show that both methods lead to the same value of the diffusion constant. We present some numerical simulations to illustrate the theoretical results

    The French Muséum national d'histoire naturelle vascular plant herbarium collection dataset

    No full text
    International audienceWe provide a quantitative description of the French national herbarium vascular plants collection dataset. Held at the Muséum national d'histoire naturelle, Paris, it currently comprises records for 5,400,000 specimens, representing 90% of the estimated total of specimens. Ninety nine percent of the specimen entries are linked to one or more images and 16% have field-collecting information available. This major botanical collection represents the results of over three centuries of exploration and study. The sources of the collection are global, with a strong representation for France, including overseas territories, and former French colonies. The compilation of this dataset was made possible through numerous national and international projects, the most important of which was linked to the renovation of the herbarium building. The vascular plant collection is actively expanding today, hence the continuous growth exhibited by the dataset, which can be fully accessed through the GBIF portal or the MNHN database portal (available at: https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form). This dataset is a major source of data for systematics, global plants macroecological studies or conservation assessments

    Collective foraging decision in a gregarious insect

    No full text
    Group foraging by eusocial insects implies sophisticated recruitment processes that often result in collective decisions to exploit the most profitable sources. These advanced levels of cooperation, however, remain limited to a small range of species, and we still know little about the mechanisms underlying group foraging behaviours in the great mass of animals exhibiting lower levels of social complexity. In this paper, we report, for the first time in a gregarious insect, the cockroach Blattella germanica (L.), a collective foraging decision whereby the selection of food sources is reached without requiring active recruitment. Groups of cockroaches given a binary choice between identical food sources exhibited exploitation asymmetries whose amplitude increases with group size. By coupling behavioural observations to computer simulations, we demonstrate that selection of food sources relies uniquely on a retention effect of feeding individuals on newcomers without comparison between available opportunities. This self-organised pattern presents similarities with the foraging dynamics of eusocial species, thus stressing the generic dimension of collective decision-making mechanisms based on social amplification rules despite fundamental differences in recruitment processes. We hypothesise that such parsimony could apply to a wide range of species and help understand the emergence of collective behaviours in simple social systems. © 2010 Springer-Verlag.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore