212 research outputs found

    Introduction.Sorghum Genetic Enhancement: Research Process

    Get PDF
    Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop in the world, after wheat, maize, rice and barley. It is cultivated in wide geographic areas in the Americas, Africa, Asia and the Pacific. It is the second major crop (after maize) across all agroecologies in Africa. It is the third important cereal (after rice and wheat ) in India. Sorghum was grown in 100 countries of the world in the year 2003, covering an area of approximately 44 million ha with grain production of 59 million t and average productivity of 1.34 t ha-1 (FAO website: http://www.fao.org). Sorghum occupies 24 m ha in Africa (mostly in Ethiopia, Mali, Nigeria and Sudan), 12 m ha in Asia (China, India, Myanmar, Pakistan, Saudi Arabia, Thailand and Yemen), 3.5 m ha in Central and South America (Argentina, Brazil, Colombia, Honduras, Mexico and Venezuela), 3.1 m ha in the USA and 0.5 m ha in Australia. Asia and Africa together contributed about 59% (34.5 million t) of the total world production in 2003. The crop is mainly grown in tropical and subtropical areas where agroclimatic conditions such as rainfall, soil and temperature are variable. Much of the crop is produced in the more marginal and stress-prone areas of the semi-arid tropics (SAT), mainly on smallholdings

    Future directions for food security and diversity partnership and research strategy for sorghum

    Get PDF
    Future demand for sorghum is going to be different from the demand pattern observed at present and in the past. The demand for sorghum grain as food is expected to decline in the future while its demand as poultry feed, flour, ethanol (biofuel) and alcoholic beverages is going to increase. The demand for sorghum – both green and dry plants – as livestock feed will also go up. It is also expected that the demand for sorghum grain and stalk for industrial end use in nutrition and health products would increase. Thus, sorghum will essentially enhance the performance of integrated crop-livestock systems and improve options for commercialization in semi-arid agriculture. Therefore, any strategy to promote sorghum must be designed from this perspective. In addition to the shifts in demand for sorghum grain and stalk, the vast developments in science and scientific tools can be used for germplasm evaluation, selection, screening and development of new cultivars and their utilization. The progress in Information and Communication Technology (ICT) can lead to the dissemination of knowledge and technology and the management and coordination of networks and partnerships. Visible changes have occurred in seed policies and seed delivery systems in countries where ICRISAT is operating. The new millennium has led to a new vision and strategies of the donor community. At present, agricultural research is viewed as a mechanism to alleviate poverty and hunger, ensure food security and sustain the livelihoods of poor communities around the world rather than just a means of increasing productivity. Considering these factors and the findings reported in previous chapters, there is a need to devise future strategies for sorghum breeding and partnership, formulate technology exchange policies and pave pathways for promoting diversity in sorghum cultivation

    Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial

    Get PDF
    Background Infections acquired in hospital are an important cause of morbidity and mortality in very preterm infants. Several small trials have suggested that supplementing the enteral diet of very preterm infants with lactoferrin, an antimicrobial protein processed from cow's milk, prevents infections and associated complications. The aim of this large randomised controlled trial was to collect data to enhance the validity and applicability of the evidence from previous trials to inform practice. Methods In this randomised placebo-controlled trial, we recruited very preterm infants born before 32 weeks' gestation in 37 UK hospitals and younger than 72 h at randomisation. Exclusion criteria were presence of a severe congenital anomaly, anticipated enteral fasting for longer than 14 days, or no realistic prospect of survival. Eligible infants were randomly assigned (1:1) to receive either enteral bovine lactoferrin (150 mg/kg per day; maximum 300 mg/day; lactoferrin group) or sucrose (same dose; control group) once daily until 34 weeks' postmenstrual age. Web-based randomisation minimised for recruitment site, gestation (completed weeks), sex, and single versus multifetal pregnancy. Parents, caregivers, and outcome assessors were unaware of group assignment. The primary outcome was microbiologically confirmed or clinically suspected late-onset infection (occurring >72 h after birth), which was assessed in all participants for whom primary outcome data was available by calculating the relative risk ratio with 95% CI between the two groups. The trial is registered with the International Standard Randomised Controlled Trial Number 88261002. Findings We recruited 2203 participants between May 7, 2014, and Sept 28, 2017, of whom 1099 were assigned to the lactoferrin group and 1104 to the control group. Four infants had consent withdrawn or unconfirmed, leaving 1098 infants in the lactoferrin group and 1101 in the sucrose group. Primary outcome data for 2182 infants (1093 [99·5%] of 1098 in the lactoferrin group and 1089 [99·0] of 1101 in the control group) were available for inclusion in the modified intention-to-treat analyses. 316 (29%) of 1093 infants in the intervention group acquired a late-onset infection versus 334 (31%) of 1089 in the control group. The risk ratio adjusted for minimisation factors was 0·95 (95% CI 0·86–1·04; p=0·233). During the trial there were 16 serious adverse events for infants in the lactoferrin group and 10 for infants in the control group. Two events in the lactoferrin group (one case of blood in stool and one death after intestinal perforation) were assessed as being possibly related to the trial intervention. Interpretation Enteral supplementation with bovine lactoferrin does not reduce the risk of late-onset infection in very preterm infants. These data do not support its routine use to prevent late-onset infection and associated morbidity or mortality in very preterm infants. Funding UK National Institute for Health Research Health Technology Assessment programme (10/57/49)

    Development of NILs from heterogeneous inbred families for validating the rust resistance QTL in peanut (Arachis hypogaea L.)

    Get PDF
    Heterogeneous inbred families segregating for rust resistance were identified from the two crosses involving susceptible (TAG 24 and TG 26) and resistant (GPBD 4) varieties of peanut. Rust-resistant (less than score 5) and rust-susceptible (more than score 5) plants were identified in each HIF and evaluated under rust epiphytotic conditions. The set of plants belonging to the same HIF, but differing significantly in rust resistance, not in other morphological and productivity traits, was regarded as near-isogenic lines (NILs). Largely, rust-resistant NILs had GPBD 4-type allele, and susceptible NILs carried either TAG 24 or TG 26-type allele at the three SSR loci (IPAHM103, GM1536 and GM2301) linked to a major genomic region governing rust resistance. Comparison of the remaining genomic regions between the NILs originating from each of the HIFs using transposon markers indicated a considerably high similarity of 86.4% and 83.1% in TAG 24 × GPPBD 4 and TG 26 × GPBD 4, respectively. These NILs are useful for fine mapping and expression analysis of rust resistance

    More anxious than depressed: prevalence and correlates in a 15-nation study of anxiety disorders in people with type 2 diabetes mellitus

    Get PDF
    Background Anxiety disorder, one of the highly disabling, prevalent and common mental disorders, is known to be more prevalent in persons with type 2 diabetes mellitus (T2DM) than the general population, and the comorbid presence of anxiety disorders is known to have an impact on the diabetes outcome and the quality of life. However, the information on the type of anxiety disorder and its prevalence in persons with T2DM is limited. Aims To assess the prevalence and correlates of anxiety disorder in people with type 2 diabetes in different countries. Methods People aged 18–65 years with diabetes and treated in outpatient settings were recruited in 15 countries and underwent a psychiatric interview with the Mini-International Neuropsychiatric Interview. Demographic and medical record data were collected. Results A total of 3170 people with type 2 diabetes (56.2% women; with mean (SD) duration of diabetes 10.01 (7.0) years) participated. The overall prevalence of anxiety disorders in type 2 diabetic persons was 18%; however, 2.8% of the study population had more than one type of anxiety disorder. The most prevalent anxiety disorders were generalised anxiety disorder (8.1%) and panic disorder (5.1%). Female gender, presence of diabetic complications, longer duration of diabetes and poorer glycaemic control (HbA1c levels) were significantly associated with comorbid anxiety disorder. A higher prevalence of anxiety disorders was observed in Ukraine, Saudi Arabia and Argentina with a lower prevalence in Bangladesh and India. Conclusions Our international study shows that people with type 2 diabetes have a high prevalence of anxiety disorders, especially women, those with diabetic complications, those with a longer duration of diabetes and poorer glycaemic control. Early identification and appropriate timely care of psychiatric problems of people with type 2 diabetes is warranted

    Balanced amino acid and higher micronutrients in millets complements legumes for improved human dietary nutrition

    Get PDF
    Background and objectives: More than 2 billion people suffer with malnutrition arising from dietary protein and micronutrients deficiencies. To enhance the dietary nutrient quality, the current study used two largely grown varieties of finger millet, pearl millet, pigeonpea, and chickpea to evaluate the effect of millet–legume blends for their enhanced protein digestibility, amino acid profiles, and essential micronutrients. Findings: Our study revealed the presence of significant levels of proteins (6.3%– 22.3%), essential amino acids, and micronutrients (Fe: 2.6–8.5 mg; Zn: 2–5.5 mg; Ca: 22‐450 mg in 100 g) in these varieties. When specific millets combined with legumes in 3:1 proportion, significantly enhanced nutritional value of food by providing a balanced amino acid with good protein digestibility, and high levels of iron (7.58 mg) and zinc (4.96 mg) with 100 g of pearl millet and calcium (400.57 mg) with 100 g of finger millet. Conclusions: Pigeonpea and chickpea have a good level of proteins with essential amino acids except methionine and cysteine, whereas millet had balanced amino acid including methionine and cysteine (50% higher) and much higher levels of micronutrients (Fe, Zn and Ca). Therefore, specific millets and legumes combination complemented higher levels of micronutrients in addition to complete proteins to support comprehensive human nutrition. Significance and novelty: This study opens prospects for selecting complementary nutrient‐dense varieties for household consumption. Industries can explore these product developments significantly to reduce malnutrition if consumed adequately, which is not possible with polished rice, refined wheat flour or maize even if it is combined with legumes

    Micro-algae come of age as a platform for recombinant protein production

    Get PDF
    A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins

    Therapeutic targeting of CK2 in acute and chronic leukemias

    Get PDF
    Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Thus, proper regulation of phosphorylation events is critical to the homeostatic functions of cell signaling. Indeed, deregulation of signaling pathways underlies many human diseases, including cancer.[1] The importance of phosphorylation makes protein kinases and phosphatases promising therapeutic targets for a wide variety of disorders.[2] CK2, formerly known as casein kinase II, was discovered in 1954, [3] although only recently, and especially over the last two decades, it has become one of the most studied protein kinases, due to its ubiquity, pleiotropy and constitutive activity. In particular, appreciation of its pleiotropy has completely changed our vision of CK2 biology, from an ordinary cell homeostasis-maintaining enzyme to a master kinase potentially implicated in many human physiological and pathological events. CK2 is responsible for about 25% of the phosphoproteome,[4] as it catalyzes the phosphorylation of >300 substrates.[5] This partly explains the CK2 interconnected roles that underlie its involvement in many signaling pathways. However, CK2 prevalent roles are promotion of cell growth and suppression of apoptosis. Accordingly, several lines of evidence support the notion that CK2 is a key player in the pathogenesis of cancer. High levels of CK2 transcript and protein expression, as well as increased kinase activity are associated with the pathological functions of CK2 in a number of neoplasias.[6] It was only over the last decade, after extensive analyses in solid tumors, that basic and translational studies have provided evidence for a pivotal role of CK2 in driving the growth of different blood cancers as well, although the first report demonstrating increased CK2 expression in acute myelogenous leukemia (AML) dates back to 1985.[7] Since then, CK2 overexpression/activity has been demonstrated in other hematological malignancies, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelogenous leukemia (CML). [8] With the notable exceptions of CML and pediatric ALL, many patients with leukemias still have a poor outcome, despite the development of protocols with optimized chemotherapy combinations. Insufficient response to first-line therapy and unsalvageable relapses present major therapeutic challenges. Moreover, chemotherapy, even if successful, could have deleterious long-term biological and psychological effects, especially in children.[9] Furthermore, CML patients can develop resistance to tyrosine kinase inhibitors (TKIs), while both primary chemoresistant and relapsed pediatric ALL cases still remain an unresolved issue.[9
    corecore