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Therapeutic targeting of CK2 in acute and chronic leukemias
F Buontempo1, JA McCubrey2, E Orsini1, M Ruzzene3, A Cappellini4, A Lonetti1, C Evangelisti5,6, F Chiarini5,6, C Evangelisti1,
JT Barata7 and AM Martelli1

CK2 is a ubiquitously expressed, constitutively active Ser/Thr protein kinase, which is considered the most pleiotropic protein kinase
in the human kinome. Such a pleiotropy explains the involvement of CK2 in many cellular events. However, its predominant roles
are stimulation of cell growth and prevention of apoptosis. High levels of CK2 messenger RNA and protein are associated with CK2
pathological functions in human cancers. Over the last decade, basic and translational studies have provided evidence of CK2 as a
pivotal molecule driving the growth of different blood malignancies. CK2 overexpression has been demonstrated in nearly all the
types of hematological cancers, including acute and chronic leukemias, where CK2 is a key regulator of signaling networks critical
for cell proliferation, survival and drug resistance. The findings that emerged from these studies suggest that CK2 could be a
valuable therapeutic target in leukemias and supported the initiation of clinical trials using CK2 antagonists. In this review, we
summarize the recent advances on the understanding of the signaling pathways involved in CK2 inhibition-mediated effects with a
particular emphasis on the combinatorial use of CK2 inhibitors as novel therapeutic strategies for treating both acute and chronic
leukemia patients.
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INTRODUCTION
Phosphorylation can regulate almost every property of a protein
and is involved in all fundamental cellular processes. Thus, proper
regulation of phosphorylation events is critical to the homeostatic
functions of cell signaling. Indeed, deregulation of signaling
pathways underlies many human diseases, including cancer.1 The
importance of phosphorylation makes protein kinases and
phosphatases promising therapeutic targets for a wide variety of
disorders.2 CK2, formerly known as casein kinase II, was discovered
in 1954,3 although only recently, and especially over the last two
decades, it has become one of the most studied protein kinases,
due to its ubiquity, pleiotropy and constitutive activity. In
particular, appreciation of its pleiotropy has completely changed
our vision of CK2 biology, from an ordinary cell homeostasis-
maintaining enzyme to a master kinase potentially implicated in
many human physiological and pathological events. CK2 is
responsible for about 25% of the phosphoproteome,4 as it
catalyzes the phosphorylation of 4300 substrates.5 This partly
explains the CK2 interconnected roles that underlie its involve-
ment in many signaling pathways. However, CK2 prevalent roles
are promotion of cell growth and suppression of apoptosis.
Accordingly, several lines of evidence support the notion that CK2
is a key player in the pathogenesis of cancer. High levels of CK2
transcript and protein expression, as well as increased kinase
activity are associated with the pathological functions of CK2 in a
number of neoplasias.6 It was only over the last decade, after
extensive analyses in solid tumors, that basic and translational
studies have provided evidence for a pivotal role of CK2 in driving

the growth of different blood cancers as well, although the first
report demonstrating increased CK2 expression in acute myelo-
genous leukemia (AML) dates back to 1985.7 Since then, CK2
overexpression/activity has been demonstrated in other hemato-
logical malignancies, including acute lymphoblastic leukemia
(ALL), chronic lymphocytic leukemia (CLL) and chronic myelogen-
ous leukemia (CML).8 With the notable exceptions of CML and
pediatric ALL, many patients with leukemias still have a poor
outcome, despite the development of protocols with optimized
chemotherapy combinations. Insufficient response to first-line
therapy and unsalvageable relapses present major therapeutic
challenges. Moreover, chemotherapy, even if successful, could
have deleterious long-term biological and psychological effects,
especially in children.9 Furthermore, CML patients can develop
resistance to tyrosine kinase inhibitors (TKIs), while both primary
chemoresistant and relapsed pediatric ALL cases still remain an
unresolved issue.9

Therefore, there is a need for novel, less toxic and more
effective targeted therapeutic strategies for leukemic patients. The
findings that emerged from studies on CK2 in leukemias have
highlighted the potential for CK2 inhibitors to be an efficacious
treatment for this type of malignant disorders. In this review,
following a brief overview of what is known about CK2 in general
and its contribution to some aspects of cancer, we will tackle the
issue of CK2 inhibitors. Then, we will summarize the recent
advances on the signaling pathways involved in CK2 inhibition-
mediated effects in leukemias, with a particular emphasis on the
combinatorial use of CK2 inhibitors as novel therapeutic strategies.
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CK2 GENERAL FEATURES
CK2 is ubiquitously distributed in eukaryotes. Its activity depends
on the catalytic subunit (α and/or α′) incorporated into a
tetrameric structure (the typical ‘butterfly-shaped’ holoenzyme)
composed of two regulatory (β) and two catalytic subunits, in a
homozygous or heterozygous composition (α2β2; αα′β2; α′2β2)
(Figure 1). The α subunits comprise a catalytic core consisting of
two major folding domains (N- and C- terminal), which harbor the
active site in between.10 The β-subunits bind the α-subunits
through their C-terminal domains and, by doing so, they enhance
the stability, but not the activity, of CK2. Indeed, dimerization of
the β-subunits is mandatory for the holoenzyme. Moreover, the
regulatory subunits interact with protein partners and determine
substrate specificity.10

At variance with most protein kinases whose activity is turned
on in response to specific stimuli and whose genetic alterations
often underlie pathological situations, CK2 is not susceptible to a
tight regulation and there are no gain-of-function mutations
known to affect its activity.10 CK2α is phosphorylated in a cell-
cycle-dependent manner at four amino acidic residues located in
its C-terminal region. Nevertheless, these phosphorylation events
do not affect CK2 catalytic activity.10 Also the β-subunit is
phosphorylated at its autophosphorylation site and at Ser 209.10

Since autophosphorylation of the β-subunit controls its stability,
this event could result in CK2-enhanced activity, but this
hypothesis needs to be investigated in a rigorous manner.
Mounting evidence suggests additional mechanisms of CK2
regulation, including polymerization, local recruitment into com-
plexes or intracellular compartmentalization.10

Although oncogenic mutations of CK2 have never been
reported, its overexpression and hyperactivation are a common
denominator in the majority of cancers and are associated with an
aggressive tumor cell behavior.11 Therefore, the concept of ‘cancer
addiction’ has been recently applied to CK2: cells with abnormally
high levels of CK2 are ‘predisposed’ to malignant transformation
and treatment with CK2 inhibitors should deprive them of their
refractoriness to apoptosis.12 In contrast, CK2 inhibition in healthy
cells would result in deprivation of a redundant kinase, so that
consequences on cell physiology would be less serious than in
cancer cells that are addicted to high CK2 activity levels.
Furthermore, CK2 would create a cellular environment positive

to neoplasia not in a classical hierarchical way, but rather by
impinging ‘laterally’ on a number of signaling cascades crucially
determining cell fate.13

CK2 REGULATION OF CANCER CELL BEHAVIOR
CK2 acts as a regulator of several hallmarks of cancer cell
behavior.1,14 For the scope of this review, it is especially important
to focus on some signaling networks through which CK2 sustains
proliferation and survival of tumor cells.

Sustaining cell proliferation and survival
CK2 upregulates the PI3K/PTEN/Akt/mTOR, JAK/STAT and Ras/
MEK/ERK signaling modules. These pathways control cell pro-
liferation and survival through multiple mechanisms.15,16

CK2 stimulates Akt by two distinct mechanisms. On one side,
CK2 phosphorylates a cluster of residues (Ser 380/Thr 382/Ser 385)
at the PTEN C-terminal: this stabilizes PTEN but reduces its lipid
phosphatase activity, thus preventing the dephosphorylation of
phosphatidylinositol 3,4,5-trisphosphate (PIP3) and perpetuating
its action as Akt activator.17 On the other side, CK2 directly
phosphorylates Akt at Ser 129, which both positively contributes
to Akt activity and increases Akt association with the chaperone
protein HSP90, thus protecting Akt from protein phosphatase 2A
(PP2A) activity on Thr 308.18

As to JAK/STAT, CK2 is an interacting partner of both JAK1 and
JAK2, phosphorylates JAK2 in vitro and is essential for JAK-
STAT1/3/5 activation, hence it regulates expression of genes which
provide survival advantage and proliferative capacity to cancer
cells.19–21

Regarding the Ras/MEK/ERK module, CK2 potentiates ERK
activation by direct phosphorylation at Ser 244/Ser 245/ Ser 246
residues within the nuclear localization signal, thus enhancing
ERK1/2 nuclear translocation and activity.22

Another signaling pathway frequently deregulated in cancer
cells and displaying both pro-proliferative and anti-apoptotic
functions is the NF-κB network.23 Functional activation of NF-kB
requires it to be released from its inhibitor (IκB) and translocate to
the nucleus whereby it activates transcription. This occurs through
the regulated degradation of IκB, a multistep process in which
phosphorylation results in IκB ubiquitination and recognition by
the proteasome.23 CK2 acts a multi-site regulator of the NF-κB
signaling pathway. Indeed, CK2 targets not only IkB,24 but also
both IKK-i/IKKε upstream of IkB25 and NF-κB p65 itself.26

Phosphorylation at Ser 529 of p65 enhances the NF-κB transcrip-
tional activity by improving its DNA-binding potential.27

Moreover, in addition to the effects on pro-survival signaling
pathways, CK2 can directly inhibit both the intrinsic and extrinsic
apoptotic pathways, by targeting caspase signaling.28

Figure 1. CK2 structure. (a) Schematic representation of the ‘butterfly’ CK2 heterotetramer (top) and crystal structure (PDB code 1jwh, bottom).
(b) Structure of the α catalytic subunit (crystal structure PDB code 1na7), highlighting crucial domains for the constitutive activity.
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Inactivating tumor suppressors
Besides PTEN, CK2 interacts with and phosphorylates p53 at Ser
392, which results in a partial inactivation of p53 DNA-binding and
tumor suppressor functions.29 Also PML levels are controlled by
CK2 phosphorylation, which promotes its degradation by the
proteasome.30 Another target of CK2 is Ikaros (IKFZ1). However, as
this tumor suppressor is a lymphoid transcription factor of special
relevance in ALL, its regulation by CK2 will be discussed in more
detail further on in this review.

Regulating endoplasmic reticulum stress/unfolded protein
response signaling
Nutrient deprivation, hypoxia, proteasome dysfunction and
sustained demands on the secretory pathway are conditions
often encountered by cancer cells that can lead to the
accumulation of misfolded proteins in the endoplasmic reticulum
(ER) and cause ‘ER stress’. Unfolded protein response (UPR)
encompasses a signaling network that constantly monitors the
protein-folding status in the ER and initiates corrective measures
for maintaining ER homeostasis.31 Recent findings suggest that
tumor cells are prone to loss of proteostasis within the ER and that
alterations of ER proteostasis are key players in cancer develop-
ment and aggressiveness. Therefore, cancer cells could be
susceptible to targeted drugs that either downregulate homeo-
static UPR outputs or alternatively trigger terminal (pro-apoptotic)
UPR.32 Emerging evidence suggests that CK2 has an important
role in the control of ER stress/UPR signaling either by direct
protein phosphorylation33 or by regulating the transcription of
factors involved in ER stress/UPR signaling.34

How could CK2 control so many different pathways? An
intriguing unifying hypothesis has been proposed. CK2 phosphor-
ylates CDC37 (the co-chaperone of HSP90) at Ser 13.35 This
phosphorylation strengthens the interactions between CDC37 and
HSP90, thereby upregulating the HSP90 chaperoning machinery
and increasing the association of HSP90 with client kinases (Akt,
ERK, Raf, and so on). This would result in proper folding and
maturation of protein kinases that are critical for cancer cells.

CK2 INHIBITORS
Progress on understanding the multiple roles played by CK2 has
been boosted over the last decades by the availability of several
chemical inhibitors (Figure 2). The first ATP-competitive CK2
inhibitor, 5,6-dichloro-1(b-D-ribofuranosyl)benzimidazole (DRB)
was disclosed in 1986,36 32 years after CK2 was discovered by
Burnett and Kennedy.3 However, a significant improvement in
specificity was achieved with the ATP-competitive inhibitor

4,5,6,7-tetrabromo-2-azabenzimidazole (TBB),37 which was one of
the first CK2 inhibitors used for cell treatment and was shown to
induce apoptosis.38 2-dimethylamino-4,5,6,7-tetrabromo-1H-ben-
zimidazole (DMAT) is a derivative of TBB and was demonstrated to
have a superior efficacy and similar selectivity for CK2.39 However,
both TBB and DMAT are effective in cells only at quite high
concentrations. Moreover, their specificities are not absolute.40

A major progress was represented by the discovery of CX-4945
(Silmitasertib), an orally bioavailable, ATP-competitive CK2 inhi-
bitor that is efficacious in the low micromolar range in cells.41

CX-4945 was the first CK2 inhibitor that entered clinical trials for
hematological and solid cancer treatment (ClinicalTrials.gov
NCT01199718; NCT02128282; NCT00891280).
CIGB-300 is a clinical-stage CK2-specific cell-permeable peptide

inhibitor (Figure 2) that modulates CK2 activity by binding to the
phosphoacceptor site on CK2 targets.42 Although its mechanisms
of action are not fully understood and off-target effects have been
reported,43 CIGB-300 was effective in a variety of cancer cells
where it reduced proliferation and induced apoptosis.44 Both local
and systemic administration of CIGB-300 elicited significant anti-
tumor effects in human cancers xenografted in nude mice.45

A phase I clinical trial in cervical cancer showed that CIGB-300 was
safe and well tolerated.46

CK2 IN ACUTE AND CHRONIC LEUKEMIAS
Evidence suggests that CK2 has leukemogenic potential, at least in
mice. Indeed, transgenic mice with CK2α expression under the
control of an immunoglobulin heavy chain promoter and
enhancer were prone to develop leukemia/lymphoma, which
was accelerated by a c-Myc transgene, resulting in neonatal
leukemia.47 Moreover, co-expression of CK2α accelerated the
development of T-cell ALL (T-ALL)/lymphoma resulting from
transgenic expression of the TAL-1 oncogene in the thymus.48

Furthermore, p53-deficient CK2α transgenic mice developed
thymic lymphomas much faster than their counterpart lacking
the CK2 transgene.49 Overall, these findings documented that CK2
could be a major player in the oncogenic process, although it is
not considered to be a classical oncogene, given the fact that no
CK2 gain-of-function mutations have been described so far in
cancer patients.
Since then, despite the disparate molecular events that drive

the different human leukemia subtypes, high levels of CK2
appeared as a common denominator in all of them, suggesting
that CK2 targeting could represent a multi-potential therapeutic
strategy.

Figure 2. Selected CK2 inhibitors. (a) DRB (5,6-dichloro-1(b-D-ribofuranosyl)benzimidazole), TBB (4,5,6,7-tetrabromo-2-azabenzimidazole),
DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole) and CX-4945, all of which are ATP-competitive compounds. (b) CIGB-300 is a
peptide, whose primary structure is indicated by one-letter code; sequence in italics corresponds to the cell-penetrating peptide TAT,
conjugated to the active moiety by β-alanine.
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We will now review the evidence that links CK2 with the
pathobiology of both acute and chronic leukemias (summarized in
Table 1).

T-ALL
CK2 acts as a critical regulator of PI3K/Akt/mTOR signaling in
T-ALL. This signaling network is overactive in most T-ALL cell lines
and patient samples where it portends a poorer prognosis.50 It
was demonstrated that most pediatric T-ALL patient samples did
not harbor PTEN gene alterations, displayed normal PTEN
messenger RNA levels and expressed higher PTEN protein levels
than normal T-cell precursors, yet PIP3 levels and PI3K/Akt/mTOR
signaling were upregulated when compared with healthy
thymocyte subsets.51 PTEN overexpression was associated with
decreased PTEN lipid phosphatase activity, resulting from CK2
overexpression and hyperactivation which targeted several Ser/
Thr residues located at the C-terminal tail of PTEN. Treatment of
T-ALL lymphoblasts and cell lines with TBB resulted in abrogation
of C-terminal PTEN phosphorylation with concomitant activation
of its lipid phosphatase activity and inhibition of Akt phosphor-
ylation. These findings for the first time indicated that aberrant
CK2 activity contributed to PI3K/Akt pathway upregulation in
T-ALL cells, at least in part, through a PTEN post-translational
inactivation.51 These results have been subsequently confirmed
using the highly selective CK2 inhibitor, CX-4945.52

However, very recently, an unanticipated physiological role of
CK2 has been disclosed in healthy human γδ thymocytes. Indeed,
γδ thymocytes displayed higher, and T-cell receptor-inducible,
CK2 activity than their αβ counterparts and were strikingly
sensitive to apoptosis upon CK2 pharmacological inhibition.53

Nevertheless, CK2 upregulated Akt signaling pathway not only in
healthy γδ thymocytes, but also in γδ T-ALL cells. When compared
with healthy thymocytes or leukemic αβ T-cells, γδ T-ALL cells
displayed increased CK2 activity, which was potentiated by CD27

co-stimulation, and enhanced apoptosis upon CK2 blockade by
CX-4945. Importantly, CX-4945 was effective in delaying tumor
growth in vivo in a xenograft model of human γδ T-ALL.53 Apart
from the indication that targeting CK2 could be a therapeutic
strategy especially effective for treating T-ALL patients with γδ
lineage blasts that account for about 10% of total T-ALL cases,
these findings are noteworthy for cancer immunotherapy, as γδ
T-cells have been documented to have important roles in
protective (anti-tumor) responses.54

Recent evidence has highlighted that CK2 is involved in the
signals originating from the interleukin (IL)-7 receptor (IL-7R). Both
interleukin-7 (IL-7) and its receptor are essential for healthy T-cell
development and homeostasis, however aberrant IL-7/IL-7R-
mediated signaling promotes and sustains T-ALL.55 While IL-7
had a minor but significant positive effect on CK2 activity in
leukemic T-cells, CK2 activity was mandatory for optimal IL-7/
IL-7R-dependent signaling.56 Indeed, CK2 pharmacological inhibi-
tion impaired both JAK1/STAT5 and PI3K/Akt pathway activation
triggered by either IL-7 or by mutational activation of IL-7R. As a
consequence, viability, growth and cell cycle progression of T-ALL
cell lines and lymphoblasts were negatively affected. Furthermore,
treatment of IL-7-dependent TAIL7 cells with a combination of
CX-4945 and either a pan-JAK inhibitor or the JAK1/2 clinical-stage
inhibitor ruxolitinib, synergized in preventing IL-7-mediated
viability. Importantly, CK2 activity was required for the viability
of T-ALL cells expressing a mutant IL-7R.56 Overall, this study
identified CK2 as a major effector of IL-7/IL-7R signaling in T-ALL.
NOTCH1 activating mutations have been identified in ~ 50–60%

of T-ALL cases and can be therapeutically targeted with γ-
secretase inhibitors (GSIs). Mutant NOTCH1 can activate both
c-MYC and PI3K/Akt signaling in T-ALL.57 Indeed, aberrant
NOTCH1 signaling could transcriptionally downregulate PTEN
expression through HES1 in T-ALL cell lines, thus dampening the
efficacy of GSIs.57

Table 1. Targets and functions of CK2 in acute and chronic leukemias

Disorder CK2 targets CK2 functions

T-ALL PTEN Phosphorylation, stabilization and inactivation of PTEN lipid phosphatase activity leading to
upregulation of PI3K/Akt/mTOR signaling51–53

IL-7/IL-7R signaling Increases signaling network (JAK1/STAT5, PI3K/Akt/mTOR) activation56

NOTCH1 signaling Compensates mutated NOTCH1-driven PTEN transcriptional downregulation59–60

ER stress/UPR signaling Regulates GRP78/BIP, IRE1α, CHOP expression levels52

170 kDa P-glycoprotein Upregulation of expression/activity leading to chemotherapeutic drug resistance62

Ph− B-ALL IKFZ-1 Downmodulation of tumor suppressor activity, which results in enhanced cell cycle progression and
survival, through the action of multiple genes (CDC25A, CCNA, CCND3, CCNE2, CDK2, CDK6, CDC2, CDC7,
CDC1, CDC20, ANAPC1, ANAPC17, PIP4KA2, PIK3CD, PIK3CB2, PIKFYVE, PI4KB, PIP4K2B, INPP5D, c-MYC,
MYCBP2, CRLF2, DNM2, BCL6, BACH2, JARID1B)68–74

PTEN Phosphorylation, stabilization and inactivation of PTEN lipid phosphatase activity leading to
upregulation of PI3K/Akt/mTOR signaling75

UPR signaling Activation76

Ph+ B-ALL Bcr-Abl Interacts with the Bcr moiety of both p190 and p210 Bcr-Abl. Stimulates Bcr-Abl activity78–79

AML PI3K/Akt, NF-κB and STAT3
signaling networks

Potentiates activation of the signaling networks, also in the LIC subset (CD34+/CD38−/Lin−)81,84

CLL PTEN, USP7 Phosphorylation, stabilization and inactivation of PTEN lipid phosphatase activity leading to
upregulation of PI3K/Akt/mTOR signaling.86,91–93 Increases USP7 activity leading to PTEN nuclear
exclusion88

STAT3 STAT3 phosphorylation at Ser 727 that results in STAT3 translocation to the nucleus and increased
transcription of cell proliferation/survival-related genes89

CML Bcr-Abl Physically interacts with Bcr-Abl and enhances protein translation by controlling S6RP phosphorylation
levels, independently from either MEK/ERK1/2 or PI3K/Akt/mTOR signaling95–97

PTEN Phosphorylation, stabilization and inactivtion of PTEN lipid phosphatase activity leading to enhanced
PI3K/Akt/mTOR signaling98

Abbreviations: AML, acute myelogenous leukemia; B-ALL, B-cell acute lymphoblastic leukemia; CHOP, CCAAT-enhancer-binding protein homologous protein;
CLL, chronic lymphocytic leukemia; CML, chronic myelogenous leukemia; ER, endoplasmic reticulum; GRP78/BIP, 78 kDa glucose-regulated protein/binding
immunoglobulin protein; IKFZ-1, Ikaros; IL-7, interleukin-7; IL-7R, interleukin-7 receptor; IRE1α, inositol-requiring enzyme 1 α; LIC, leukemia-initiating cell; S6RP,
S6 ribosomal protein; T-ALL, T-cell acute lymphoblastic leukemia; UPR, unfolded protein response; USP7, ubiquitin-specific-processing protease 7.
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However, it is not entirely clear whether NOTCH1 mutations are
associated with decreased PTEN expression in primary T-ALL
cells.58 It has been reported that, irrespectively of their NOTCH1
mutational status, pediatric T-ALL primary samples expressed
significantly higher PTEN protein levels than healthy controls.
Nevertheless, NOTCH1-mutated T-ALLs displayed a tendency to
have lower PTEN protein levels than NOTCH1-wild-type samples.59

GSI treatment upregulated PTEN protein in T-ALL cells, however
the increase was paralleled by PTEN phosphorylation at the CK2
target residue Ser 380. These findings suggested that the impact
of NOTCH1-mediated PTEN transcriptional downregulation could
be partially compensated at the protein level by CK2-dependent
PTEN phosphorylation, stabilization and inactivation with a
consequent hyperactivation of the PI3K/Akt pathway. Consistently,
treatment of NOTCH1-mutated/PTEN-positive T-ALL cell lines and
primary samples with both a GSI and a CK2 inhibitor, resulted in a
cooperative effect in diminishing leukemic T-cell viability and
proliferation.59 Therefore, the combination of a GSI with a CK2
inhibitor has the potential to promote PTEN reactivation at both
the transcriptional and the post-translational level.
More recently, it has been shown that CK2 blockage synergized

in vitro with the bromo- and extra-terminal domain (BET) inhibitor
JQ1 in T-ALL cells with upregulated CK2 levels, NOTCH1 activation
and high c-Myc expression.60 CX-4945 decreased the expression of
activated NOTCH1 by increasing its proteasomal degradation. It
should be considered that while CX-4945 induced a pro-apoptotic
UPR,52 JQ1, by downregulating c-Myc, usually activates a pro-
survival UPR.61 Therefore, it was hypothesized that CX-4945 and
JQ1 could synergistically kill T-ALL cells by switching pro-survival
to pro-apoptotic UPR.60

Notably, we have shown that CK2 pharmacological inhibition
affects UPR in T-ALL cells, as demonstrated by a significant
decrease in the levels of the main UPR regulator 78 kDa glucose-
regulated protein/binding immunoglobulin protein (GRP78/BIP),
and leads to apoptosis via upregulation of the ER stress/UPR cell
death mediators inositol-requiring enzyme 1 α (IRE1α) and CCAAT-
enhancer-binding protein homologous protein (CHOP).52 These
findings indicate that modulation of the ER stress/UPR signaling
through CK2 inhibition may indeed be exploited to induce
apoptosis in T-ALL cells.
CK2 could be directly involved in drug resistance of T-ALL cells,

as it has been shown that drug-resistant CCRF-CEM cells displayed
higher expression levels of the CK2α catalytic subunit when
compared to the parental cells.62 Drug-resistant CCRF-CEM cells
overexpress the membrane transporter 170 kDa P-glycoprotein (P-
gp), encoded by the ABCB1 gene,63 one of the major determinants
of drug resistance in acute leukemias. Either pharmacological
downregulation of CK2 activity or knockdown of CK2α expression
by siRNA interference, induced cell death in drug-resistant CCRF-
CEM cells. Even more importantly, CK2 inhibition promoted an
increased uptake of chemotherapeutic drugs inside the leukemic
cells and sensitized them to drug-induced apoptosis in a
cooperative manner.62 The CK2-dependent mechanisms under-
lying drug resistance remain at present unclear. However, P-gp is a
substrate of CK2.64 Therefore, the higher amounts of chemother-
apeutic drugs accumulated in CCRF-CEM cells when CK2 activity
was inhibited, might reflect a positive role had by CK2 in
increasing P-gp activity.
Taken together, all of the aforementioned findings will be

crucial to rationally develop targeted combination therapies,
which include CK2 inhibitors for treating T-ALL patients.

B-ALL
A growing body of evidence supports the idea that an important
function of CK2 in Ph- B-ALL involves the regulation of the
transcription factor, IKZF1. IKZF1 is a tumor suppressor that is

crucial for controlling the development and the functions of both
B- and T-lymphocytes.65

IKZF1 mutations are frequent (20–30% of cases) in both
pediatric and adult B-ALL cases and are associated with a poor
patient outcome.66 IKZF1 stability and activity are regulated
through a fine balance between protein phosphatase 1 (PP1) and
CK2 activity.67 When phosphorylated by CK2, IKFZ1 displays
reduced stability and activity.68 These effects could be reversed by
PP1. Dovat’s group demonstrated that IKFZ1 controls B-ALL cell
proliferation by repressing the expression of genes that promote
both cell cycle progression and the PI3K/Akt/mTOR pathway.69 In
a panel of patient-derived primary high-risk B-ALL xenografts,
pharmacological inhibition of CK2 restored IKZF1 function as a
transcriptional repressor of cell cycle- and PI3K/Akt/mTOR
pathway-related genes, resulting in anti-leukemic effects both
in vitro and in vivo. Interestingly, in high-risk leukemia where one
IKZF1 allele had been deleted, CK2 inhibition restored the
transcriptional repressor function of the remaining wild-type IKZF1
allele.69

The same group has subsequently shed light on other IKFZ1
functions that are controlled by CK2 in B-ALL cells. These include
regulation of the expression of C-MYC (which controls transcrip-
tion of genes related to cell cycle, survival and metabolism),70

MYCBP2 (a putative E3 ubiquitin ligase),70 of CRLF2 (a member of
the type I cytokine receptor family),71 of DNM2 (a GTPase essential
for intracellular vesicle formation and trafficking, cytokinesis and
receptor endocytosis),72 of BCL6 (a proto-oncogene that is highly
expressed in B-ALL) and of BACH2 (a suppressor of transcription).73

Moreover, IKFZ1 repressed transcription of the histone H3K4
demethylase, JARID1B, in B-ALL cells and IKZF1-mediated repres-
sion of JARID1B was impaired by CK2.74 Indeed, inhibition of CK2
resulted in increased binding of a IKFZ1-HDAC 1 complex to the
promoter of JARID1B, with upregulated global levels of trimethy-
lated histone H3 Lys 27 and decreased histone H3 Lys 9
acetylation.74 A schematic cartoon of CK2/IKFZ1 signaling in
B-ALL is presented in Figure 3.
Similarly to T-ALL, CK2 phosphorylated and inactivated PTEN in

B-ALL cells and this resulted in PI3K/Akt/mTOR activation.75

Consistently, CX-4945 reversed PTEN levels to those observed in
healthy controls and promoted B-ALL cell death without
significantly affecting normal bone marrow cells.75

Moreover, we have demonstrated that a combined treatment
consisting of bortezomib and CX-4945 prevented B-ALL cells from
adequately defending from the ER stress by activating UPR
signaling.76 In this regard, it is worth remembering that
bortezomib recently moved into the pediatric oncology arena,
displaying encouraging results in several early phase clinical trials
for relapsed B-ALL.77

An important role for CK2 has been identified in Ph+ B-ALL
where it was found that the α subunit interacts with the Bcr
moiety of both p190 and p210 Bcr-Abl fusion proteins in a region
comprised between amino acidic residues 242 and 413.78

Treatment of Bcr-Abl+ leukemic cells with CK2 inhibitors resulted
in growth arrest and apoptosis. Apoptosis increased when
leukemic cells were treated with a drug combination consisting
of DMAT and the TKI, imatinib,78,79 while Bcr-Abl inhibition with
imatinib resulted in downregulation of CK2 activity.78 This
observation is interesting since CK2 has always been considered
a constitutively active protein kinase, while this report suggests
that Bcr-Abl could somehow positively regulate CK2 activity.
Overall, these findings have provided the rational for the use of

CK2 inhibitors, either alone or in combination with other drugs
already approved (for example, imatinib) or in clinical trials (for
example, bortezomib), for B-ALL treatment, including high-risk
cases with deletion of one IKZF1 allele or expressing Bcr-Abl.
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Acute myelogenous leukemia
High-expression levels of CK2α subunit have been linked to a
worse prognosis in AML patients with normal karyotype, both in
terms of disease-free and overall survival.80 Indeed, upregulation
of CK2α was associated with increased levels of a number of
phosphoproteins belonging to the PI3K/Akt/mTOR pathway,
including Bad, FoxO1, Bcl2 and Bcl-xL. Interestingly, overexpres-
sion of CK2α in AML cells was paralleled by a decrease in p53
protein levels. Remarkably, CK2 pharmacological inhibitors tar-
geted not only the bulk of leukemic cells,80 but also the CD34+

/CD38- AML cell subset,81 which is enriched in leukemia-initiating
cells (LICs), the true target for leukemia eradication.82 CK2 inhibitor
effects on LICs were potentiated by concomitant inhibition of PI3K
activity, while this treatment had minimal effects on healthy
hematopoietic stem cells.81 These early studies were subsequently
substantiated by findings documenting that either CX-4945 or
siRNA to CK2 caused p53-dependent AML cell apoptosis.
Furthermore, CK2 inhibition was associated with a synergistic
increase of the cytotoxic effects of daunorubicin.83

More recently, it has been highlighted that the CK2 catalytic α
and regulatory β subunits were consistently overexpressed in LICs
(CD34+/CD38−/Lin−) isolated from a cohort of AML patients.
Analysis of messenger RNA expression showed that CKα expres-
sion in LICs was in most cases higher than twofold in comparison
with a pool of healthy CD34+ hematopoietic stem cells. CK2
inactivation with either CX-4945 or siRNA induced an accumula-
tion of LICs in the late S/G2/M phases of the cell cycle and
triggered apoptosis.84 Moreover, upon CK2 inhibition, LICs
displayed an increased sensitivity to doxorubicin. CK2 blockade
was associated with a downmodulation of BMI-1, a proto-
oncogene that is essential for LIC maintenance,85 as well as by a
marked impairment of activation of Akt, NF-κB and STAT3
signaling. These findings are noteworthy as both Akt and NF-κB

play critical roles for LIC biological properties. Importantly,
combining CX-4945 and either doxorubicin or NF-κB or STAT3
inhibitors resulted in stronger cytotoxic effects on LICs.84 There-
fore, this report clearly indicates that CK2 inhibition could be a
rational approach to minimize the persistence of residual LICs.
Overall, the studies performed in preclinical models of

AML have set the rationale for testing CK2 inhibitors in
combination treatments with conventional and/or novel drugs
in AML patients.

Chronic lymphocytic leukemia
A central role for CK2 has been demonstrated in CLL, where CK2 is
overexpressed and hyperactive when compared to healthy B
cells.86 Chemical inhibition of CK2 induced apoptosis of CLL cells
without significantly affecting healthy B- and T-lymphocyte
viability. Remarkably, this effect was not reversed by co-
culturing with OP9 stromal cells, which were otherwise capable
of rescuing CLL cells from in vitro spontaneous apoptosis. Upon
induction of apoptosis by CK2 inhibition, inactivation of PKCβ and
PKCδ, two PI3K downstream targets, was reported, which
correlated with increased PTEN activity due to dephosphorylation,
thus indicating that CK2 regulates CLL cell survival at least in part
through phosphorylation-dependent PTEN inactivation and PI3K/
PKC-signaling upregulation.86 However, It should be considered
that, apart from its role as a negative regulator of the PI3K/Akt/
mTOR pathway, PTEN can localize to the nucleus where it
regulates genomic stability and cell proliferation/survival through
mechanisms independent from its lipid phosphatase activity.87

Nuclear exclusion of PTEN is mediated by ubiquitin-specific-
processing protease 7 (USP7)-dependent de-ubiquitination. Inter-
estingly, CK2 was recently shown to be an upstream positive
regulator of USP7 in CLL cells.88 A CK2 inhibitor, TBB, promoted
PTEN nuclear localization, similarly to the USP7 inhibitor, P5091.

Figure 3. Schematic cartoon of CK2/IKFZ1 signaling in B-ALL. IKFZ1 is a tumor suppressor that controls the transcription of a number of genes
critical for the leukemogenic process. CK2 phosphorylates and inactivates IKFZ1 function. The effects of CK2 are counteracted by PP1 and the
CK2 inhibitor CX-4945. Arrows indicate activating events; perpendicular lines indicate inhibitory events. HDAC 1, histone deacetylase 1; IKFZ1,
Ikaros; PI3K, phosphatidylinositol 3-phosphate kinase; PP1, protein phosphatase 1.
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Therefore, CK2 targeting could restore not only PTEN lipid
phosphatase activity but also its shuttling to the nucleus.
Expression of PTEN in the nucleus was associated with cell cycle
blockage and induction of apoptosis, confirming the potent
oncosuppressive role of PTEN in CLL.88

From a mechanistic point of view, it has been recently
documented that CK2, complexed in the cytoplasm with CD5
and BLNK (B-cell linker) proteins, phosphorylated STAT3 at Ser 727
in CLL cells.89 Ser 727 p-STAT3 has an important role in CLL
pathobiology, by activating a series of proliferative and anti-
apoptotic genes.90 Indeed, phosphorylation at Ser 727 confers to
STAT3 biologic activities similar to those of tyrosine phosphoryla-
tion, as Ser 727 p-STAT3 is shuttled to the nucleus where it binds
to DNA and upregulates transcription.90 Therefore, STAT3 could be
a yet another CK2 key target in CLL.
CK2 antagonists (DRB, TBB) induced apoptosis of CLL cells in all

patient samples analyzed, however the sensitivity to CK2 down-
regulation correlated positively with the percentage of leukemic
cells in the peripheral blood, β2 microglobulin serum levels and
advanced clinical stage. In contrast, sensitivity to CK2 inhibition
did not correlate with expression of either ZAP-70 or CD38, or with
IGVH mutation status.86 These findings suggest that subsets of
patients with aggressive CLL may benefit from therapeutic
strategies targeting CK2. Subsequent studies, which took advan-
tage of either the clinical-stage CK2 inhibitor, CX-4945,91,92 or the
cell-permeable peptide, CIGB-300,93 confirmed these earlier
findings, not only in vitro but also against CLL cells xenografted
in mice. Remarkably, CX-4945 was cytotoxic in vitro to
samples from patients displaying cytogenetic abnormalities
associated with poor outcome and chemotherapy resistance,
such as 11q and 17p deletions.92 Of note, CX-4945 synergized with
either fludarabine or the bruton tyrosine kinase (BTK) inhibitor,
ibrutinib, when used in CLL primary cells.91 It is worth
emphasizing here that ibrutinib is the first-in-class BTK inhibitor
approved by the US Food and Drug Administration for treatment
of CLL.94

Overall, all of these investigations indicated that CK2 has
important roles in CLL cell survival, paving the ground for the
inclusion of CK2 antagonists into future strategies, in combination
with traditional chemotherapeutic agents, such as fludarabine, or
novel targeted therapies.

Chronic myelogenous leukemia
In 1985, it was documented that CK2 expression was increased in
leukemia cells from CML patients in blast crisis, as compared to
healthy peripheral blood mononuclear cells.7 A subsequent study
showed that CKα physically interacts with Bcr-Abl in CML K562
cells via the Abl portion of the fusion protein.95 More recently, it
was found that in LAMA84 CML cells, characterized by imatinib
resistance due to Bcr-Abl gene amplification, CK2 protein and
catalytic activity were upregulated as compared to imatinib-
sensitive cells. In resistant cells, CK2 co-localized with Bcr-Abl in
the cytoplasm, and these two proteins were members of the same
multi-protein complex(es).96 Treatment with CX-4945 counter-
acted the interactions between CK2 and Bcr-Abl and caused cell
death by apoptosis. Importantly, a drug combination consisting of
CX-4945 and imatinib displayed a synergistic effect in reducing
viability of LAMA84 and other resistant CML cell lines, while
knockdown of CK2α expression by siRNA restored the sensitivity
to low imatinib concentrations. Therefore, these findings demon-
strated that CK2 contributes to imatinib resistance in CML cells
and suggested that CK2 inhibition could be a promising strategy
for combination treatments in CML patients displaying TKI-
resistance.96 Moreover, using imatinib-resistant cell lines, it was
found that downregulation of CK2 by either CX-5011 (a CX-4945
derivative) or RNA interference caused a dramatic dephosphoryla-
tion of S6 ribosomal protein (S6RP) at Ser 235/236 without
affecting MEK/ERK1/2 or PI3K/Akt/mTOR signaling, and concomi-
tant reduction in protein translation.97 CK2 pharmacological
inhibition induced apoptosis and acted synergistically with either
imatinib or a MEK-inhibitor in reducing the viability of imatinib-
resistant CML cells. These findings highlighted hyperphosphoryla-
tion of S6RP as a novel CK2-mediated mechanism of acquired
imatinib resistance in CML cells and suggested that co-targeting
CK2 and MEK could be another promising drug combination to
restore imatinib responsiveness of TKI-resistant CML cells.97

In CML cells, Bcr-Abl controlled CK2-dependent PTEN phos-
phorylation with consequent inactivation of the lipid phosphatase
activity.98 Accordingly, imatinib treatment reversed the effects of
CK2 on PTEN. As expected, CK2 pharmacological targeting
promoted PTEN reactivation with concomitant apoptosis induc-
tion. Importantly, CK2 inhibition induced apoptosis in imatinib-
resistant primary CML cells carrying the T315I-Bcr-Abl mutation.98

Figure 4. Schematic cartoon of CK2-mediated signaling in CML cells. (a) The Bcr moiety of Bcr-Abl interacts with and activates CK2 which then
phosphorylates and inactivates PTEN. Bcr-Abl stimulates PI3K activity on PIP2 that yields PIP3. PIP3 has a fundamental role in Akt activation.
Moreover, CK2, through an as yet unclear mechanism, phosphorylates S6RP, which controls translation. (b) Upon treatment with CK2
inhibitors, PI3K activity is dampened and PTEN is able to dephosphosphorylate PIP3 to PIP2. Therefore, Akt is inhibited. Translation is
downregulated due to dephosphorylation of S6RP. Arrows indicate activating events; perpendicular lines indicate inhibitory events. PI3K,
phosphatidylinositol 3-phosphate kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-trisphosphate; S6RP, S6
ribosomal protein; TBB, 4,5,6,7-tetrabromo-2-azabenzimidazole.
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A schematic cartoon of CK2-dependent signaling in CML is
presented in Figure 4.
In light of all of these findings, CK2 signaling has emerged as a

potential novel target to achieve synthetic lethality with TKIs,
suggesting that a combination therapy could help in eradicating
Ph+ leukemias even in those cases characterized by TKI-resistance
due to Bcr-Abl amplification or mutations.

CONCLUSIONS
The evidence reviewed here documents that CK2-dependent
signals have a central role in the control of leukemia cell
proliferation, survival and drug resistance, making CK2 an
attractive target for anti-leukemic therapy. These findings have
highlighted CK2 inhibitors as novel molecules to be tested in
clinical trials aimed at treating both acute and chronic leukemias,
although some fundamental outstanding issues still need to be
addressed.
In particular, will inhibition of CK2 signaling negatively affect

neoplastic blood cells without deleterious side effects on healthy
cells? In other words, is there a therapeutic window when such a
ubiquitous kinase is to be targeted? The fact that CK2 is often
considered as a redundant kinase under normal conditions would
suggest that adverse effects could be mild, although definitive
evidence is still lacking in humans, whereas in mice, CK2 is
required for CD4+ T-cell activation and differentiation into either
Th2 or Th17 cells.99 In this connection, apoptosis elicited by CK2
inhibition in healthy human γδ T-cells needs to be considered very
carefully, although these cells represent a very rare subset (1%) of
total thymocytes.53 In an immunocompetent model of glioma in
C57BL/6 mice, high doses of CX-4945 produced toxicities,
reflected in weight loss and death in one case, with the maximal
tolerated established at 600 mg/kg.100 However, whether these
data translate to humans is not clear, since the adverse effects
elicited by CX-4945 in cancer patients have not been disclosed as
yet. It is also worth highlighting that CIGB-300 has been tested by
intralesional administration in two phase I cervical cancer clinical
trials. Overall, no maximum-tolerated dose or dose-limiting
toxicity was observed, and the systemic adverse events were
rash, facial edema, itching, hot flashes, and localized cramps,101 as
well as moderate allergic-like reactions that likely reflected a
strong correlation found between unincorporated CIGB-300 and
histamine levels in blood.102

Importantly, preclinical settings have clearly indicated that the
association of CK2 inhibitors with either conventional or novel
drugs is likely to offer additional rational therapeutic approaches
and a superior efficacy for leukemia treatment. These observa-
tions, together with growing preclinical data on the cross-talks
between the different signaling cascades controlled by CK2,
highlight the importance of a better design of future clinical trials.
In particular, correlative or translational sub-studies need to be
performed in parallel with the aim to clearly identify clinically
feasible and reliable biomarkers of response as well as the
emergence of resistance to CK2 inhibition, to guarantee more
personalized and effective patient treatments. Future studies
aimed to determine additional cell functions that might be
regulated by CK2 in leukemias, will be of critical importance for
the development of novel and efficacious targeted combination
treatments.
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