42 research outputs found

    Energy-based modelling to assess effects of chemicals on Caenorhabditis elegans: A case study on uranium

    Get PDF
    International audienceThe ubiquitous free-living nematode Caenorhabditis elegans is a powerful animal model for measuring the evolutionary effects of pollutants which is increasingly used in (eco)toxicological studies. Indeed, toxicity tests with this nematode can provide in a few days data on the whole life cycle. These data can be analysed with mathematical tools such as toxicokinetic-toxicodynamic modelling approaches. In this study, we assessed how a chronic exposure to a radioactive heavy metal (uranium) affects the life-cycle of C. elegans using a mechanistic model. In order to achieve this, we exposed individuals to a range of seven concentrations of uranium. Growth and reproduction were followed daily. These data were analysed with a model for nematodes based on the Dynamic Energy Budget theory, able to handle a wide range of plausible biological parameters values. Parameter estimations were performed using a Bayesian framework. Our results showed that uranium affects the assimilation of energy from food with a no-effect concentration (NEC) of 0.42 mM U which would be the threshold for effects on both growth and reproduction. The sensitivity analysis showed that the main contributors to the model output were parameters linked to the feeding processes and the actual exposure concentration. This confirms that the real exposure concentration should be measured accu-rately and that the feeding parameters should not be fixed, but need to be reestimated during the parameter estimation process

    Integrated presentation of ecological risk from multiple stressors

    Get PDF
    Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic

    Energetic basis for bird ontogeny and egg-laying applied to the bobwhite quail

    Get PDF
    Birds build up their reproductive system and undergo major tissue remodeling for each reproductive season. Energetic specifics of this process are still not completely clear, despite the increasing interest. We focused on the bobwhite quail — one of the most intensely studied species due to commercial and conservation interest — to elucidate the energy fluxes associated with reproduction, including the fate of the extra assimilates ingested prior to and during reproduction. We used the standard Dynamic Energy Budget model, which is a mechanistic process-based model capable of fully specifying and predicting the life cycle of the bobwhite quail: its growth, maturation and reproduction. We expanded the standard model with an explicit egg-laying module and formulated and tested two hypotheses for energy allocation of extra assimilates associated with reproduction: Hypothesis 1, that the energy and nutrients are used directly for egg production ; and Hypothesis 2, that the energy is mostly spent fueling the increased metabolic costs incurred by building up and maintaining the reproductive system and, subsequently, by egg-laying itself. Our results suggest that Hypothesis 2 is the more likely energy pathway. Model predictions capture well the whole ontogeny of a generalized northern bobwhite quail and are able to reproduce most of the data variability via variability in (i) egg size, (ii) egg-laying rate and (iii) inter-individual physiological variability modeled via the zoom factor, i.e. assimilation potential. Reliable models with a capacity to predict physiological responses of individuals are relevant not only for experimental setups studying effects of various natural and anthropogenic pressures on the quail as a bird model organism, but also for wild quail management and conservation. The model is, with minor modifications, applicable to other species of interest, making it a most valuable tool in the emerging field of conservation physiology

    An individual-based model of Zebrafish population dynamics accounting for energy dynamics

    Get PDF
    International audienceDeveloping population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebra-fish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level

    Analyse par modélisation mécanistique des réponses microévolutives d'une population de Caenorhabditis elegans exposée à un stress métallique radioactif

    No full text
    The evolution of toxic effects at a relevant scale is an important challenge for the ecosystem protection. Indeed, pollutants may impact populations over long-term and represent a new evolutionary force which can be adding itself to the natural selection forces. Thereby, it is necessary to acquire knowledge on the phenotypics and genetics changes that may appear in populations submitted to stress over several generations. Usually statistical analyses are performed to analyse such multigenerational studies. The use of a mechanistic mathematical model may provide a way to fully understand the impact of pollutants on the populations' dynamics. Such kind of model allows the integration of biological and toxic processes into the analysis of ecotoxicological data and the assessment of interactions between these processes. The aim of this Ph.D. project was to assess the contributions of the mechanistical modelling to the analysis of evolutionary experiment assessing long-term exposure. To do so, a three step strategy has been developed. Foremost, a multi-generational study was performed to assess the evolution of two populations of the ubiquitous nematode Caenorhabditis elegans in control conditions or exposed to 1.1 mM of uranium. Several generations were selected to assess growth, reproduction, and dose-responses relationships, through exposure to a range of concentrations (from 0 to 1.2 mM U) with all endpoints measured daily. A first statistical analysis was then performed. In a second step, a bioenergetic model adapted to the assessment of ecotoxicological data (DEBtox) was developed on C. elegans. Its numerical behaviour was analysed. Finally, this model was applied to all the selected generations in order to infer parameters values for the two populations and to assess their evolutions. Results highlighted an impact of the uranium starting from 0.4 mM U on both C. elegans' growth and reproduction. Results from the mechanistical analysis indicate this effect is due to an impact on the assimilation of energy from food. Both the mechanistic and the classic approaches highlighted individuals' adaptation to environmental conditions. Despite this, differential evolutions of the individuals from the uranium-selected population were also highlighted. All these results were more in-depth described by the mechanistical analysis. Overall, this work contributes to our knowledge on the effects of pollutants on population dynamics, and demonstrates the contributions of mechanistical modelling which can be applied in other contexts to achieve in fine a better assessment of environmental risks of pollutants.L'évaluation des effets toxiques à des échelles pertinentes est un challenge important pour la protection des écosystèmes. En effet, les polluants peuvent impacter les populations sur le long terme et représenter une nouvelle force évolutive qui peut s'ajouter aux autres forces de sélection. Il est par conséquent nécessaire d'acquérir des connaissances sur les changements phénotypiques et génétiques apparaissant dans une population exposée à un stress durant plusieurs générations. En général les études multi-générations sont analysées à partir d'approches purement statistiques. La modélisation mécanistique a le potentiel de comprendre pleinement les effets des polluants sur la dynamique des populations. Ce type de modèle permet d'intégrer des processus biologiques et toxiques à l'analyse de données d'écotoxicologie et d'étudier les interactions entre ces processus. L'objectif de ce doctorat était d'étudier les apports de la modélisation mécanistique, par rapport à une analyse statistique classique, dans l'analyse de données d'évolution expérimentale suite à l'exposition sur le long terme à un contaminant. Pour ce faire, une stratégie en trois temps a été menée. Tout d'abord, une expérience multigénérationnelle a été réalisée sur deux populations de C. elegans (contrôle et exposée à 1,1 mM U) dérivées d'une population ancestrale présentant une forte diversité génétique. Toutes les trois générations, des individus ont été extraits des populations et soumis à une gamme de concentrations en uranium (de 0 à 1,2 mM U). Une première analyse statistique classique a alors été menée. Dans un second temps, un modèle bioénergétique adapté à l'analyse de données d'écotoxicologie (DEBtox) a été mis au point pour C. elegans et son comportement numérique a été analysé. Enfin, ce modèle a été appliqué à l'ensemble des générations étudiées afin d'inférer les valeurs des paramètres pour les deux populations et d'étudier leur évolution. Les résultats obtenus ont mis en évidence un impact de l'uranium à la fois sur la croissance et la reproduction de C. elegans à partir de 0,4 mM U. Les résultats de l'analyse mécanistique indiquent que cet effet est la résultante d'un impact sur l'assimilation d'énergie depuis la nourriture. Les deux approches, tant mécanistique que classique, ont mis en évidence une adaptation des individus des deux populations aux conditions expérimentales. Malgré cela, les analyses ont également mis en évidence une évolution différentielle des individus de la population soumise à l'uranium par rapport à ceux de la population témoin. Ces résultats ont été plus finement décrits par l'analyse mécanistique. Globalement, ce travail contribue à accroître nos connaissances sur les effets des polluants sur la dynamique des populations, et démontre les apports de la modélisation mécanistisque qui pourra être appliquée dans d'autres contextes afin de réaliser in fine une meilleure évaluation des risques écologiques des polluants

    Mechanistical modelling assessment of microevolutionary responses of Caenorhabditis elegans population submitted to a radioactive heavy metal

    No full text
    L'évaluation des effets toxiques à des échelles pertinentes est un challenge important pour la protection des écosystèmes. En effet, les polluants peuvent impacter les populations sur le long terme et représenter une nouvelle force évolutive qui peut s'ajouter aux autres forces de sélection. Il est par conséquent nécessaire d'acquérir des connaissances sur les changements phénotypiques et génétiques apparaissant dans une population exposée à un stress durant plusieurs générations. En général les études multi-générations sont analysées à partir d'approches purement statistiques. La modélisation mécanistique a le potentiel de comprendre pleinement les effets des polluants sur la dynamique des populations. Ce type de modèle permet d'intégrer des processus biologiques et toxiques à l'analyse de données d'écotoxicologie et d'étudier les interactions entre ces processus. L'objectif de ce doctorat était d'étudier les apports de la modélisation mécanistique, par rapport à une analyse statistique classique, dans l'analyse de données d'évolution expérimentale suite à l'exposition sur le long terme à un contaminant. Pour ce faire, une stratégie en trois temps a été menée. Tout d'abord, une expérience multigénérationnelle a été réalisée sur deux populations de C. elegans (contrôle et exposée à 1,1 mM U) dérivées d'une population ancestrale présentant une forte diversité génétique. Toutes les trois générations, des individus ont été extraits des populations et soumis à une gamme de concentrations en uranium (de 0 à 1,2 mM U). Une première analyse statistique classique a alors été menée. Dans un second temps, un modèle bioénergétique adapté à l'analyse de données d'écotoxicologie (DEBtox) a été mis au point pour C. elegans et son comportement numérique a été analysé. Enfin, ce modèle a été appliqué à l'ensemble des générations étudiées afin d'inférer les valeurs des paramètres pour les deux populations et d'étudier leur évolution. Les résultats obtenus ont mis en évidence un impact de l'uranium à la fois sur la croissance et la reproduction de C. elegans à partir de 0,4 mM U. Les résultats de l'analyse mécanistique indiquent que cet effet est la résultante d'un impact sur l'assimilation d'énergie depuis la nourriture. Les deux approches, tant mécanistique que classique, ont mis en évidence une adaptation des individus des deux populations aux conditions expérimentales. Malgré cela, les analyses ont également mis en évidence une évolution différentielle des individus de la population soumise à l'uranium par rapport à ceux de la population témoin. Ces résultats ont été plus finement décrits par l'analyse mécanistique. Globalement, ce travail contribue à accroître nos connaissances sur les effets des polluants sur la dynamique des populations, et démontre les apports de la modélisation mécanistisque qui pourra être appliquée dans d'autres contextes afin de réaliser in fine une meilleure évaluation des risques écologiques des polluants.The evolution of toxic effects at a relevant scale is an important challenge for the ecosystem protection. Indeed, pollutants may impact populations over long-term and represent a new evolutionary force which can be adding itself to the natural selection forces. Thereby, it is necessary to acquire knowledge on the phenotypics and genetics changes that may appear in populations submitted to stress over several generations. Usually statistical analyses are performed to analyse such multigenerational studies. The use of a mechanistic mathematical model may provide a way to fully understand the impact of pollutants on the populations' dynamics. Such kind of model allows the integration of biological and toxic processes into the analysis of ecotoxicological data and the assessment of interactions between these processes. The aim of this Ph.D. project was to assess the contributions of the mechanistical modelling to the analysis of evolutionary experiment assessing long-term exposure. To do so, a three step strategy has been developed. Foremost, a multi-generational study was performed to assess the evolution of two populations of the ubiquitous nematode Caenorhabditis elegans in control conditions or exposed to 1.1 mM of uranium. Several generations were selected to assess growth, reproduction, and dose-responses relationships, through exposure to a range of concentrations (from 0 to 1.2 mM U) with all endpoints measured daily. A first statistical analysis was then performed. In a second step, a bioenergetic model adapted to the assessment of ecotoxicological data (DEBtox) was developed on C. elegans. Its numerical behaviour was analysed. Finally, this model was applied to all the selected generations in order to infer parameters values for the two populations and to assess their evolutions. Results highlighted an impact of the uranium starting from 0.4 mM U on both C. elegans' growth and reproduction. Results from the mechanistical analysis indicate this effect is due to an impact on the assimilation of energy from food. Both the mechanistic and the classic approaches highlighted individuals' adaptation to environmental conditions. Despite this, differential evolutions of the individuals from the uranium-selected population were also highlighted. All these results were more in-depth described by the mechanistical analysis. Overall, this work contributes to our knowledge on the effects of pollutants on population dynamics, and demonstrates the contributions of mechanistical modelling which can be applied in other contexts to achieve in fine a better assessment of environmental risks of pollutants

    Analyse par modélisation mécanistique des réponses microévolutives d'une population de Caenorhabditis elegans exposée à un stress métallique radioactif

    Get PDF
    The evolution of toxic effects at a relevant scale is an important challenge for the ecosystem protection. Indeed, pollutants may impact populations over long-term and represent a new evolutionary force which can be adding itself to the natural selection forces. Thereby, it is necessary to acquire knowledge on the phenotypics and genetics changes that may appear in populations submitted to stress over several generations. Usually statistical analyses are performed to analyse such multigenerational studies. The use of a mechanistic mathematical model may provide a way to fully understand the impact of pollutants on the populations' dynamics. Such kind of model allows the integration of biological and toxic processes into the analysis of ecotoxicological data and the assessment of interactions between these processes. The aim of this Ph.D. project was to assess the contributions of the mechanistical modelling to the analysis of evolutionary experiment assessing long-term exposure. To do so, a three step strategy has been developed. Foremost, a multi-generational study was performed to assess the evolution of two populations of the ubiquitous nematode Caenorhabditis elegans in control conditions or exposed to 1.1 mM of uranium. Several generations were selected to assess growth, reproduction, and dose-responses relationships, through exposure to a range of concentrations (from 0 to 1.2 mM U) with all endpoints measured daily. A first statistical analysis was then performed. In a second step, a bioenergetic model adapted to the assessment of ecotoxicological data (DEBtox) was developed on C. elegans. Its numerical behaviour was analysed. Finally, this model was applied to all the selected generations in order to infer parameters values for the two populations and to assess their evolutions. Results highlighted an impact of the uranium starting from 0.4 mM U on both C. elegans' growth and reproduction. Results from the mechanistical analysis indicate this effect is due to an impact on the assimilation of energy from food. Both the mechanistic and the classic approaches highlighted individuals' adaptation to environmental conditions. Despite this, differential evolutions of the individuals from the uranium-selected population were also highlighted. All these results were more in-depth described by the mechanistical analysis. Overall, this work contributes to our knowledge on the effects of pollutants on population dynamics, and demonstrates the contributions of mechanistical modelling which can be applied in other contexts to achieve in fine a better assessment of environmental risks of pollutants.L'évaluation des effets toxiques à des échelles pertinentes est un challenge important pour la protection des écosystèmes. En effet, les polluants peuvent impacter les populations sur le long terme et représenter une nouvelle force évolutive qui peut s'ajouter aux autres forces de sélection. Il est par conséquent nécessaire d'acquérir des connaissances sur les changements phénotypiques et génétiques apparaissant dans une population exposée à un stress durant plusieurs générations. En général les études multi-générations sont analysées à partir d'approches purement statistiques. La modélisation mécanistique a le potentiel de comprendre pleinement les effets des polluants sur la dynamique des populations. Ce type de modèle permet d'intégrer des processus biologiques et toxiques à l'analyse de données d'écotoxicologie et d'étudier les interactions entre ces processus. L'objectif de ce doctorat était d'étudier les apports de la modélisation mécanistique, par rapport à une analyse statistique classique, dans l'analyse de données d'évolution expérimentale suite à l'exposition sur le long terme à un contaminant. Pour ce faire, une stratégie en trois temps a été menée. Tout d'abord, une expérience multigénérationnelle a été réalisée sur deux populations de C. elegans (contrôle et exposée à 1,1 mM U) dérivées d'une population ancestrale présentant une forte diversité génétique. Toutes les trois générations, des individus ont été extraits des populations et soumis à une gamme de concentrations en uranium (de 0 à 1,2 mM U). Une première analyse statistique classique a alors été menée. Dans un second temps, un modèle bioénergétique adapté à l'analyse de données d'écotoxicologie (DEBtox) a été mis au point pour C. elegans et son comportement numérique a été analysé. Enfin, ce modèle a été appliqué à l'ensemble des générations étudiées afin d'inférer les valeurs des paramètres pour les deux populations et d'étudier leur évolution. Les résultats obtenus ont mis en évidence un impact de l'uranium à la fois sur la croissance et la reproduction de C. elegans à partir de 0,4 mM U. Les résultats de l'analyse mécanistique indiquent que cet effet est la résultante d'un impact sur l'assimilation d'énergie depuis la nourriture. Les deux approches, tant mécanistique que classique, ont mis en évidence une adaptation des individus des deux populations aux conditions expérimentales. Malgré cela, les analyses ont également mis en évidence une évolution différentielle des individus de la population soumise à l'uranium par rapport à ceux de la population témoin. Ces résultats ont été plus finement décrits par l'analyse mécanistique. Globalement, ce travail contribue à accroître nos connaissances sur les effets des polluants sur la dynamique des populations, et démontre les apports de la modélisation mécanistisque qui pourra être appliquée dans d'autres contextes afin de réaliser in fine une meilleure évaluation des risques écologiques des polluants

    Analyse par modélisation mécanistique des réponses microévolutives d'une population de Caenorhabditis elegans exposée à un stress métallique radioactif

    No full text
    L'évaluation des effets toxiques à des échelles pertinentes est un challenge important pour la protection des écosystèmes. En effet, les polluants peuvent impacter les populations sur le long terme et représenter une nouvelle force évolutive qui peut s'ajouter aux autres forces de sélection. Il est par conséquent nécessaire d'acquérir des connaissances sur les changements phénotypiques et génétiques apparaissant dans une population exposée à un stress durant plusieurs générations. En général les études multi-générations sont analysées à partir d'approches purement statistiques. La modélisation mécanistique a le potentiel de comprendre pleinement les effets des polluants sur la dynamique des populations. Ce type de modèle permet d'intégrer des processus biologiques et toxiques à l'analyse de données d'écotoxicologie et d'étudier les interactions entre ces processus. L'objectif de ce doctorat était d'étudier les apports de la modélisation mécanistique, par rapport à une analyse statistique classique, dans l'analyse de données d'évolution expérimentale suite à l'exposition sur le long terme à un contaminant. Pour ce faire, une stratégie en trois temps a été menée. Tout d'abord, une expérience multigénérationnelle a été réalisée sur deux populations de C. elegans (contrôle et exposée à 1,1 mM U) dérivées d'une population ancestrale présentant une forte diversité génétique. Toutes les trois générations, des individus ont été extraits des populations et soumis à une gamme de concentrations en uranium (de 0 à 1,2 mM U). Une première analyse statistique classique a alors été menée. Dans un second temps, un modèle bioénergétique adapté à l'analyse de données d'écotoxicologie (DEBtox) a été mis au point pour C. elegans et son comportement numérique a été analysé. Enfin, ce modèle a été appliqué à l'ensemble des générations étudiées afin d'inférer les valeurs des paramètres pour les deux populations et d'étudier leur évolution. Les résultats obtenus ont mis en évidence un impact de l'uranium à la fois sur la croissance et la reproduction de C. elegans à partir de 0,4 mM U. Les résultats de l'analyse mécanistique indiquent que cet effet est la résultante d'un impact sur l'assimilation d'énergie depuis la nourriture. Les deux approches, tant mécanistique que classique, ont mis en évidence une adaptation des individus des deux populations aux conditions expérimentales. Malgré cela, les analyses ont également mis en évidence une évolution différentielle des individus de la population soumise à l'uranium par rapport à ceux de la population témoin. Ces résultats ont été plus finement décrits par l'analyse mécanistique. Globalement, ce travail contribue à accroître nos connaissances sur les effets des polluants sur la dynamique des populations, et démontre les apports de la modélisation mécanistisque qui pourra être appliquée dans d'autres contextes afin de réaliser in fine une meilleure évaluation des risques écologiques des polluants.The evolution of toxic effects at a relevant scale is an important challenge for the ecosystem protection. Indeed, pollutants may impact populations over long-term and represent a new evolutionary force which can be adding itself to the natural selection forces. Thereby, it is necessary to acquire knowledge on the phenotypics and genetics changes that may appear in populations submitted to stress over several generations. Usually statistical analyses are performed to analyse such multigenerational studies. The use of a mechanistic mathematical model may provide a way to fully understand the impact of pollutants on the populations' dynamics. Such kind of model allows the integration of biological and toxic processes into the analysis of ecotoxicological data and the assessment of interactions between these processes. The aim of this Ph.D. project was to assess the contributions of the mechanistical modelling to the analysis of evolutionary experiment assessing long-term exposure. To do so, a three step strategy has been developed. Foremost, a multi-generational study was performed to assess the evolution of two populations of the ubiquitous nematode Caenorhabditis elegans in control conditions or exposed to 1.1 mM of uranium. Several generations were selected to assess growth, reproduction, and dose-responses relationships, through exposure to a range of concentrations (from 0 to 1.2 mM U) with all endpoints measured daily. A first statistical analysis was then performed. In a second step, a bioenergetic model adapted to the assessment of ecotoxicological data (DEBtox) was developed on C. elegans. Its numerical behaviour was analysed. Finally, this model was applied to all the selected generations in order to infer parameters values for the two populations and to assess their evolutions. Results highlighted an impact of the uranium starting from 0.4 mM U on both C. elegans' growth and reproduction. Results from the mechanistical analysis indicate this effect is due to an impact on the assimilation of energy from food. Both the mechanistic and the classic approaches highlighted individuals' adaptation to environmental conditions. Despite this, differential evolutions of the individuals from the uranium-selected population were also highlighted. All these results were more in-depth described by the mechanistical analysis. Overall, this work contributes to our knowledge on the effects of pollutants on population dynamics, and demonstrates the contributions of mechanistical modelling which can be applied in other contexts to achieve in fine a better assessment of environmental risks of pollutants.PARIS-AgroParisTech Centre Paris (751052302) / SudocSudocFranceF

    Peut-on estimer les effets de la sélection dans les tests écotoxicologiques ?

    No full text
    International audienceL'exposition aux contaminants affecte fréquemment l'expression de traits liés à la valeur adaptative des individus. Si la compréhension des effets sublétaux sur l'histoire de vie et le comportement des espèces exposés aux contaminants est maintenant mieux comprise, les effets évolutifs de ces expositions sont fréquemment négligés dans les études écotoxicologiques. Comprendre ce type de réponse est important cependant pour mieux prédire l'effets des expositions sur la dynamique des populations et les services écosystémiques. La théorie de la génétique quantitative propose plusieurs méthodes pour évaluer l'intensité et la forme de la sélection à l'aide de l'estimation de gradients de sélection (sélection directionnelle, stabilisante, disruptive ou corrélée; Lande et Arnold 1983). A partir des données produites sur une étude multi-génération d'adaptation à l'Uranium sur C. elegans (Goussen et al. 2013, 2015), nous avons exploré comment, sous certaines conditions, les résultats de tests écotoxicologiques peuvent permettre d'estimer ces effets évolutifs. Goussen et al. (2013, 2015) ont réalisé une étude sur 16 générations afin d'évaluer l'évolution de deux populations de nématodes, l'une suivie dans des conditions de contrôle, et l'autre exposées à 1,1 mM d'uranium. A partir de ces populations, des individus de plusieurs générations ont été sélectionnées pour évaluer la croissance, la reproduction, la survie lors d'expositions à une gamme de concentrations de 0 à 1,2 mM U. Ces auteurs ont ainsi montré une adaptation des individus aux conditions expérimentales (augmentation de la longueur maximale et diminution de la fécondité) pour les deux populations et ont également observé une augmentation des effets négatifs (réduction de la croissance et de la fertilité) en fonction de la concentration d'uranium. La réanalyse des données suggère que cette adaptation s'est faite aux dépends du taux de croissance, résultant en une taille adulte et un taux de reproduction plus faibles. En utilisant le taux de reproduction comme proxy pour la valeur adaptative des individus, nos résultats mettent en évidence que la concentration d'exposition à plus tendance à modifier l'intensité de la sélection que sa forme. Nous montrons également que la forme de la sélection n'est pas homogène selon le trait considéré. La taille à l'éclosion est ainsi sujette à une forte sélection directionnelle favorisant les individus plus petits tandis que la sélection stabilisante prédomine pour la taille maximale. De cette réanalyse, des perspectives seront proposées pour mieux intégrer les effets évolutifs dans la modélisation des effets écotoxicologiques en se basant sur les modèles de type DEB-TKTD.Mots clésAdaptation, Croissance, Reproduction, C. elegans, ModélisationRemerciementsCes travaux font partie du programme de recherche Envirhom-Eco financé par l'IRSN et le Ministère de l'EcologieRéférencesGoussen, B., Péry, A. R., Bonzom, J. M., & Beaudouin, R. (2015). Transgenerational adaptation to pollution changes energy allocation in populations of nematodes. Environmental science & technology, 49(20), 12500-12508.Goussen, B., Parisot, F., Beaudouin, R., Dutilleul, M., Buisset-Goussen, A., Péry, A. R., & Bonzom, J. M. (2013). Consequences of a multi-generation exposure to uranium on Caenorhabditis elegans life parameters and sensitivity. Ecotoxicology, 22, 869-878.Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 1210-1226
    corecore