10 research outputs found

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    Transmission of light in deep sea water at the site of the ANTARES neutrino telescope

    No full text
    The Antares neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the Antares site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length λabs and an effective scattering length λscteff. The values for blue (UV) light are found to be λabs ≃ 60(26) m, λscteff ≃ 265(122)m , with significant (∼15%) time variability. Finally, the results of A ntares simulations showing the effect of these water properties on the anticipated performance of the detector are presented. © 2004 Elsevier B.V. All rights reserved

    Transmission of Light in Deep Sea Water at the Site of the ANTARES Neutrino Telescope

    No full text
    The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length;,ab, and an effective scattering length lambda(sct)(eff). The values for blue (UV) light are found to be lambda(abs) similar or equal to 60(26) m, lambda(sct)(eff similar or equal to) 265(122) m, with significant (similar to15%) time variability. Finally, the results of ANTARES simulations showing the effect of these water properties on the anticipated performance of the detector are presented

    Hepatitis C virus infection in the immunocompromised host: a complex scenario with variable clinical impact

    Get PDF
    <p>Abstract</p> <p>The relationship between Hepatitis C Virus (HCV) infection and immunosuppression is complex and multifaceted. Although HCV-related hepatocytolysis is classically interpreted as secondary to the attack by cytotoxic T lymphocytes against infected cells, the liver disease is usually exacerbated and more rapidly evolutive in immunosuppressed patients. This generally occurs during the immunosuppression state, and not at the reconstitution of the host response after immunosuppressive therapy discontinuation. The field of immunosuppression and HCV infection is complicated both by the different outcome observed in different situations and/or by contrasting data obtained in the same conditions, with several still unanswered questions, such as the opportunity to modify treatment schedules in the setting of post-transplant follow-up. The complexity of this field is further complicated by the intrinsic tendency of HCV infection in itself to lead to disorders of the immune system. This review will briefly outline the current knowledge about the pathogenesis of both hepatic and extrahepatic HCV-related disorders and the principal available data concerning HCV infection in a condition of impairment of the immune system. Attention will be especially focused on some conditions - liver or kidney transplantation, the use of biologic drugs and cancer chemotherapy - for which more abundant and interesting data exist.</p
    corecore