39 research outputs found

    Continuous twin screw rheo-extrusion of an AZ91D magnesium alloy

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012The twin screw rheo-extrusion (TSRE) is designed to take advantage of the nondendritc microstructure and thixotropic characterization of semisolid-metal slurries and produce simple metal profiles directly from melts. The extrusion equipment consists of a rotor-stator high shear slurry maker, a twin screw extruder, and a die assembly. The process is continuous and has a potential for significantly saving energy, manufacturing cost, and enhancing efficiency. The present investigation was carried out to study the process performance for processing rods of an AZ91D magnesium alloy and the microstructure evolution during processing. The semisolid slurry prepared by the process was characterized by uniformly distributed nondendritic granular primary phase particles. AZ91D rods with uniform and fine microstructures and moderate mechanical properties were produced. For the given slurry making parameters, decreasing extrusion temperature was found to improve microstructures and properties. The mechanisms of particle granulation and refinement and the effect of processing parameters on process performance and thermal management are discussed. © 2012 The Minerals, Metals & Materials Society and ASM International.EPSRC (UK) and Rautomead Lt

    On the Deformation of Dendrites During Directional Solidification of a Nickel-Based Superalloy

    Get PDF
    Abstract: Synchrotron X-ray imaging has been used to examine in situ the deformation of dendrites that takes place during the solidification of a nickel-based superalloy. By combining absorption and diffraction contrast imaging, deformation events could be classified by their localization and permanence. In particular, a deformation mechanism arising from thermal contraction in a temperature gradient was elucidated through digital image correlation. It was concluded that this mechanism may explain the small misorientations typically observed in single crystal castings

    Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study

    Get PDF
    Background The impact of COVID-19 on physical and mental health and employment after hospitalisation with acute disease is not well understood. The aim of this study was to determine the effects of COVID-19-related hospitalisation on health and employment, to identify factors associated with recovery, and to describe recovery phenotypes. Methods The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a multicentre, long-term follow-up study of adults (aged ≄18 years) discharged from hospital in the UK with a clinical diagnosis of COVID-19, involving an assessment between 2 and 7 months after discharge, including detailed recording of symptoms, and physiological and biochemical testing. Multivariable logistic regression was done for the primary outcome of patient-perceived recovery, with age, sex, ethnicity, body-mass index, comorbidities, and severity of acute illness as covariates. A post-hoc cluster analysis of outcomes for breathlessness, fatigue, mental health, cognitive impairment, and physical performance was done using the clustering large applications k-medoids approach. The study is registered on the ISRCTN Registry (ISRCTN10980107). Findings We report findings for 1077 patients discharged from hospital between March 5 and Nov 30, 2020, who underwent assessment at a median of 5·9 months (IQR 4·9–6·5) after discharge. Participants had a mean age of 58 years (SD 13); 384 (36%) were female, 710 (69%) were of white ethnicity, 288 (27%) had received mechanical ventilation, and 540 (50%) had at least two comorbidities. At follow-up, only 239 (29%) of 830 participants felt fully recovered, 158 (20%) of 806 had a new disability (assessed by the Washington Group Short Set on Functioning), and 124 (19%) of 641 experienced a health-related change in occupation. Factors associated with not recovering were female sex, middle age (40–59 years), two or more comorbidities, and more severe acute illness. The magnitude of the persistent health burden was substantial but only weakly associated with the severity of acute illness. Four clusters were identified with different severities of mental and physical health impairment (n=767): very severe (131 patients, 17%), severe (159, 21%), moderate along with cognitive impairment (127, 17%), and mild (350, 46%). Of the outcomes used in the cluster analysis, all were closely related except for cognitive impairment. Three (3%) of 113 patients in the very severe cluster, nine (7%) of 129 in the severe cluster, 36 (36%) of 99 in the moderate cluster, and 114 (43%) of 267 in the mild cluster reported feeling fully recovered. Persistently elevated serum C-reactive protein was positively associated with cluster severity. Interpretation We identified factors related to not recovering after hospital admission with COVID-19 at 6 months after discharge (eg, female sex, middle age, two or more comorbidities, and more acute severe illness), and four different recovery phenotypes. The severity of physical and mental health impairments were closely related, whereas cognitive health impairments were independent. In clinical care, a proactive approach is needed across the acute severity spectrum, with interdisciplinary working, wide access to COVID-19 holistic clinical services, and the potential to stratify care. Funding UK Research and Innovation and National Institute for Health Research

    The five feeding mechanisms

    No full text
    This paper summarizes a number of studies on the flow and deformation behavior of solidifying Al-Si alloys and discusses these results with reference to the five feeding mechanisms described by Campbell. Distinct changes in rheological response at the coherency (f) and maximum packing (f) solid fractions are directly correlated with transitions between feeding mechanisms. The effect of alloy and solidification conditions on the development of mush shear strength during solidification is discussed with respect to both burst feeding at stresses exceeding the mush strength and also viscoplastic deformation of the mush at stresses below the mush strength at higher solid fractions

    The Influence of Intensification Pressure on the Gate Microstructure of AlSi3MgMn High Pressure Die Castings

    No full text
    This article focuses on the influence of intensification pressure (I.P.) on the feeding through the gate during high pressure die casting (HPDC). Two values of intensification pressure, the lowest and highest possible for the HPDC machine used, were applied to cast AlSi3MgMn tensile-bar specimens. The castings produced with higher I.P. contained a lower total fraction of porosity, as expected. Microstructural characterisation of the gate region showed markedly different features in and adjacent to the gate at the two levels of I.P. used. The microstructures indicate a change in feeding mechanism with increasing I.P. At high I.P. shear band-like features exist through the gate, suggesting that strain localisation in the gate is involved in the feeding of solidification shrinkage during the I.P. stage. At low I.P. such shear bands were not observed in the gates and feeding was less effective, resulting in a higher level of porosity in the HPDC parts

    Feeding mechanisms in high-pressure die castings

    No full text
    This work focuses on understanding the feeding behavior during high-pressure die casting (HPDC). The effects of intensification pressure (IP) and gate thickness on the transport of material through the gate during the latter stages of HPDC were investigated using an Al-Si3MgMn alloy. Microstructural characterization of the gate region indicated a marked change in feeding mechanism with increasing IP and gate size. Castings produced with a high IP or thick gate contained a relatively low fraction of total porosity, and shear band-like features existed through the gate, suggesting that semisolid strain localization in the gate is involved in feeding during the pressure intensification stage. When a low IP is combined with a thin gate, no shear band is observed in the gate and feeding is less effective, resulting in a higher level of porosity in the HPDC component. Although shear banding through the gate was found to reduce porosity in HPDC parts, if gates are not properly designed, deformation of the mushy zone through the gate can cause severe macrosegregation, large pores, and large cracks, which could severely reduce the performance of the component

    Granular deformation mechanisms in semi-solid alloys

    No full text
    Deformation mechanisms in equiaxed, partially solid Al–15 wt.% Cu are studied in situ by coupling shear-cell experiments with synchrotron X-ray radiography. Direct evidence is presented for granular deformation mechanisms in both globular and equiaxed-dendritic samples at solid fractions shortly after crystal impingement. It is demonstrated that dilatancy, arching and jamming occur at the crystal scale, and that these can cause stick–slip flow due to periodic dilation and compaction at low displacement rate. Granular deformation is found to be similar in globular and equiaxed-dendritic samples if length is scaled by the crystal size and packing is considered to occur among crystal envelopes. Rheological differences between the morphologies are discussed in terms of the competition between crystal rearrangement and crystal deformation
    corecore