12 research outputs found

    The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species.

    Get PDF
    This article has been accepted for publication inNucleic Acids Research, Volume 45, Issue D1, 4 January 2017, Pages D712–D722. https://doi.org/10.1093/nar/gkw1128 Published by Oxford University Press.The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.National Institutes of Health (NIH) [1R24OD011883]; Wellcome Trust [098051]; NIH Undiagnosed Disease Program [HHSN268201300036C, HHSN268201400093P]; Phenotype RCN [NSF-DEB-0956049]; NCI/Leidos [15x143, BD2K U54HG007990-S2 (Haussler; GA4GH), BD2K PA-15-144-U01 (Kesselman; FaceBase)]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE- AC02-05CH11231 to J.N.Y., S.C., S.E.L. and C.J.M.]. Funding for open access charge: NIH [1R24OD011883]

    Transcriptomics of In Vitro Immune-Stimulated Hemocytes from the Manila Clam Ruditapes philippinarum Using High-Throughput Sequencing

    Get PDF
    The Manila clam (Ruditapes philippinarum) is a worldwide cultured bivalve species with important commercial value. Diseases affecting this species can result in large economic losses. Because knowledge of the molecular mechanisms of the immune response in bivalves, especially clams, is scarce and fragmentary, we sequenced RNA from immune-stimulated R. philippinarum hemocytes by 454-pyrosequencing to identify genes involved in their immune defense against infectious diseases

    Sequence variability of the pattern recognition receptor Mermaid mediates specificity of marine nematode symbioses

    No full text
    Selection of a specific microbial partner by the host is an all-important process. It guarantees the persistence of highly specific symbioses throughout host generations. The cuticle of the marine nematode Laxus oneistus is covered by a single phylotype of sulfur-oxidizing bacteria. They are embedded in a layer of host-secreted mucus containing the mannose-binding protein Mermaid. This Ca2+-dependent lectin mediates symbiont aggregation and attachment to the nematode. Here, we show that Stilbonema majum—a symbiotic nematode co-occurring with L. oneistus in shallow water sediment—is covered by bacteria phylogenetically distinct to those covering L. oneistus. Mermaid cDNA analysis revealed extensive protein sequence variability in both the nematode species. We expressed three recombinant Mermaid isoforms, which based on the structural predictions display the most different carbohydrate recognition domains (CRDs). We show that the three CRDs (DNT, DDA and GDA types) possess different affinities for L. oneistus and S. majum symbionts. In particular, the GDA type, exclusively expressed by S. majum, displays highest agglutination activity towards its symbionts and lowest towards its L. oneistus symbionts. Moreover, incubation of L. oneistus in the GDA type does not result in complete symbiont detachment, whereas incubation in the other types does. This indicates that the presence of particular Mermaid isoforms on the nematode surface has a role in the attachment of specific symbionts. This is the first report of the functional role of sequence variability in a microbe-associated molecular patterns receptor in a beneficial association
    corecore