427 research outputs found

    The thermoelectric working fluid: thermodynamics and transport

    Get PDF
    Thermoelectric devices are heat engines, which operate as generators or refrigerators using the conduction electrons as a working fluid. The thermoelectric heat-to-work conversion efficiency has always been typically quite low, but much effort continues to be devoted to the design of new materials boasting improved transport properties that would make them of the electron crystal-phonon glass type of systems. On the other hand, there are comparatively few studies where a proper thermodynamic treatment of the electronic working fluid is proposed. The present article aims to contribute to bridge this gap by addressing both the thermodynamic and transport properties of the thermoelectric working fluid covering a variety of models, including interacting systems.Comment: 15 pages, 2 figure

    Thermodynamics of Thermoelectric Phenomena and Applications

    Get PDF
    Fifty years ago, the optimization of thermoelectric devices was analyzed by considering the relation between optimal performances and local entropy production. Entropy is produced by the irreversible processes in thermoelectric devices. If these processes could be eliminated, entropy production would be reduced to zero, and the limiting Carnot efficiency or coefficient of performance would be obtained. In the present review, we start with some fundamental thermodynamic considerations relevant for thermoelectrics. Based on a historical overview, we reconsider the interrelation between optimal performances and local entropy production by using the compatibility approach together with the thermodynamic arguments. Using the relative current density and the thermoelectric potential, we show that minimum entropy production can be obtained when the thermoelectric potential is a specific, optimal value

    Closed-loop approach to thermodynamics

    Full text link
    We present the closed loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power PP and the conversion efficiency η\eta, to which we add a third one, the working frequency ω\omega. We establish that a detailed understanding of the effects of the dissipative coupling on the energy conversion process, necessitates the knowledge of only two quantities: the system's feedback factor β\beta and its open-loop gain A0A_{0}, the product of which, A0βA_{0}\beta, characterizes the interplay between the efficiency, the output power and the operating rate of the system. By placing thermodynamics analysis on a higher level of abstraction, the feedback loop approach provides a versatile and economical, hence a very efficient, tool for the study of \emph{any} conversion engine operation for which a feedback factor may be defined

    Rotational Splitting of Pulsational Modes

    Full text link
    Mode splittings produced by uniform rotation and a particular form of differential rotation are computed for two-dimensional rotating 10 Mo ZAMS stellar models. The change in the character of the mode splitting is traced as a function of uniform rotation rate, and it is found that only relatively slow rotation rates are required before the mode splitting becomes asymmetric about the azimuthally symmetric (m=0) mode. Increased rotation produces a progressively altered pattern of the individual modes with respect to each other. Large mode splittings begin to overlap with the mode splittings produced by different radial and latitudinal modes at relatively low rotation rates. The mode splitting pattern for the differentially rotating stars we model is different than that for uniformly rotating stars, making the mode splitting a possible discriminant of the internal angular momentum distribution if one assumes the formidable challenge of mode identification can be overcome.Comment: 6 journal pages, 7 Figures, accepted by Ap

    The influence of twin boundaries on the Flux Line Lattice structure in YBaCuO: a study by Small Angle Neutron Scattering

    Full text link
    The influence of Twin Boundaries (TB) on the Flux Line Lattice(FLL) structure was investigated by Small Angle Neutron Scattering (SANS). YBaCuO single crystals possessing different TB densities were studied. The SANS experiments show that the TB strongly modify the structure of the FLL. The flux lines meander as soon as the magnetic field makes an angle with the TB direction. According to the value of this angle but also to the ratio of the flux lines density over the TB density, one observes that the FLL exhibits two different unit cells in the plane perpendicular to the magnetic field. One is the classical hexagonal and anisotropic cell while the other is affected by an additional deformation induced by the TB. We discuss a possible relation between this deformation and the increase of the critical current usually observed in heavily twinned samples.Comment: accepted for publication in Phys Rev

    Seismic evidence for a weak radial differential rotation in intermediate-mass core helium burning stars

    Full text link
    The detection of mixed modes that are split by rotation in Kepler red giants has made it possible to probe the internal rotation profiles of these stars, which brings new constraints on the transport of angular momentum in stars. Mosser et al. (2012) have measured the rotation rates in the central regions of intermediate-mass core helium burning stars (secondary clump stars). Our aim was to exploit& the rotational splittings of mixed modes to estimate the amount of radial differential rotation in the interior of secondary clump stars using Kepler data, in order to place constraints on angular momentum transport in intermediate-mass stars. We selected a subsample of Kepler secondary clump stars with mixed modes that are clearly rotationally split. By applying a thorough statistical analysis, we showed that the splittings of both gravity-dominated modes (trapped in central regions) and p-dominated modes (trapped in the envelope) can be measured. We then used these splittings to estimate the amount of differential rotation by using inversion techniques and by applying a simplified approach based on asymptotic theory (Goupil et al. 2013). We obtained evidence for a weak radial differential rotation for six of the seven targets that were selected, with the central regions rotating 1.8±0.31.8\pm0.3 to 3.2±1.03.2\pm1.0 times faster than the envelope. The last target was found to be consistent with a solid-body rotation. This demonstrates that an efficient redistribution of angular momentum occurs after the end of the main sequence in the interior of intermediate-mass stars, either during the short-lived subgiant phase, or once He-burning has started in the core. In either case, this should bring constraints on the angular momentum transport mechanisms that are at work.Comment: 16 pages, 8 figures, accepted in A&

    Listeners’ perceptions of the certainty and honesty of a speaker are associated with a common prosodic signature

    Get PDF
    The success of human cooperation crucially depends on mechanisms enabling individuals to detect unreliability in their conspecifics. Yet, how such epistemic vigilance is achieved from naturalistic sensory inputs remains unclear. Here we show that listeners’ perceptions of the certainty and honesty of other speakers from their speech are based on a common prosodic signature. Using a data-driven method, we separately decode the prosodic features driving listeners’ perceptions of a speaker’s certainty and honesty across pitch, duration and loudness. We find that these two kinds of judgments rely on a common prosodic signature that is perceived independently from individuals’ conceptual knowledge and native language. Finally, we show that listeners extract this prosodic signature automatically, and that this impacts the way they memorize spoken words. These findings shed light on a unique auditory adaptation that enables human listeners to quickly detect and react to unreliability during linguistic interactions

    Publisher Correction: Listeners’ perceptions of the certainty and honesty of a speaker are associated with a common prosodic signature

    Get PDF
    Correction to: Nature Communications https://doi.org/10.1038/s41467-020-20649-4, published online 8 February 2021. The original version of the Supplementary Information associated with this Article contained errors in Supplementary Figures 1, 3, 4, 5, 7 and 8 and an error in the figure legend of Supplementary Figure 8. The HTML has been updated to include a corrected version of the Supplementary Information; the original incorrect version of the Supplementary Information file can be found as Supplementary Information associated with this Correction

    Musical coordination in a large group without plans nor leaders

    Get PDF
    A widespread belief is that large groups engaged in joint actions that require a high level of flexibility are unable to coordinate without the introduction of additional resources such as shared plans or hierarchical organizations. Here, we put this belief to a test, by empirically investigating coordination within a large group of 16 musicians performing collective free improvisation—a genre in which improvisers aim at creating music that is as complex and unprecedented as possible without relying on shared plans or on an external conductor. We show that musicians freely improvising within a large ensemble can achieve significant levels of coordination, both at the level of their musical actions (i.e., their individual decisions to play or to stop playing) and at the level of their directional intentions (i.e., their intentions to change or to support the music produced by the group). Taken together, these results invite us to reconsider the range and scope of actions achievable by large groups, and to explore alternative organizational models that emphasize decentralized and unscripted forms of collective behavior
    corecore