1,978 research outputs found
Optical Gravitational Lensing Experiment. OGLE-1999-BUL-19: The First Multi-Peak Parallax Event
We describe a highly unusual microlensing event, OGLE-1999-BUL-19, which
exhibits multiple peaks in its light curve. The Einstein radius crossing time
for this event is approximately one year, which is unusually long. We show that
the motion of the Earth induces these multiple peaks in the light curve, since
the relative transverse velocity of the lens projected into the observer plane
is very small (v = 12.5 km/s). This is the lowest velocity so far published and
we believe that this is the first multiple-peak parallax event ever observed.
We also believe that this event may be exhibiting slight binary-source
signatures in addition to these parallax-induced multiple peaks. With
spectroscopic observations it is possible to test this `parallax plus
binary-source' hypothesis and (if this hypothesis turns out to be correct) to
simultaneously fit both models and obtain a measurement of the lens mass.
Furthermore, spectroscopic observations could also supply information regarding
the lens properties, possibly providing another avenue for determining the lens
mass. We found that most of the I-band blending is probably caused by light
from the lens or a binary companion to the source. However, in the V-band,
there appears to be a second blended source 0.35" away from the lensed source.
HST observations will be very useful for understanding the nature of the
blends. We also suggest that a radial velocity survey of all parallax events
will be very useful for further constraining the lensing kinematics and
understanding the origins of these events and the excess of long events toward
the bulge.Comment: 36 pages, 7 figures. Accepted for publication in MNRA
The Extreme Microlensing Event OGLE-2007-BLG-224: Terrestrial Parallax Observation of a Thick-Disk Brown Dwarf
Parallax is the most fundamental technique to measure distances to
astronomical objects. Although terrestrial parallax was pioneered over 2000
years ago by Hipparchus (ca. 140 BCE) to measure the distance to the Moon, the
baseline of the Earth is so small that terrestrial parallax can generally only
be applied to objects in the Solar System. However, there exists a class of
extreme gravitational microlensing events in which the effects of terrestrial
parallax can be readily detected and so permit the measurement of the distance,
mass, and transverse velocity of the lens. Here we report observations of the
first such extreme microlensing event OGLE-2007-BLG-224, from which we infer
that the lens is a brown dwarf of mass M=0.056 +- 0.004 Msun, with a distance
of 525 +- 40 pc and a transverse velocity of 113 +- 21 km/s. The velocity
places the lens in the thick disk, making this the lowest-mass thick-disk brown
dwarf detected so far. Follow-up observations may allow one to observe the
light from the brown dwarf itself, thus serving as an important constraint for
evolutionary models of these objects and potentially opening a new window on
sub-stellar objects. The low a priori probability of detecting a thick-disk
brown dwarf in this event, when combined with additional evidence from other
observations, suggests that old substellar objects may be more common than
previously assumed.Comment: ApJ Letters, in press, 15 pages including 2 figure
Coherent Control of Atomic Beam Diffraction by Standing Light
Quantum interference is shown to deliver a means of regulating the
diffraction pattern of a thermal atomic beam interacting with two standing wave
electric fields. Parameters have been identified to enhance the diffraction
probability of one momentum component over the others, with specific
application to Rb atoms.Comment: 5 figure
Transcriptomic Evidence That Longevity of Acquired Plastids in the Photosynthetic Slugs Elysia timida and Plakobranchus ocellatus Does Not Entail Lateral Transfer of Algal Nuclear Genes
Sacoglossan sea slugs are unique in the animal kingdom in that they sequester and maintain active plastids that they acquire from the siphonaceous algae upon which they feed, making the animals photosynthetic. Although most sacoglossan species digest their freshly ingested plastids within hours, four species from the family Plakobranchidae retain their stolen plastids (kleptoplasts) in a photosynthetically active state on timescales of weeks to months. The molecular basis of plastid maintenance within the cytosol of digestive gland cells in these photosynthetic metazoans is yet unknown but is widely thought to involve gene transfer from the algal food source to the slugs based upon previous investigations of single genes. Indeed, normal plastid development requires hundreds of nuclear-encoded proteins, with protein turnover in photosystem II in particular known to be rapid under various conditions. Moreover, only algal plastids, not the algal nuclei, are sequestered by the animals during feeding. If algal nuclear genes are transferred to the animal either during feeding or in the germ line, and if they are expressed, then they should be readily detectable with deep-sequencing methods. We have sequenced expressed mRNAs from actively photosynthesizing, starved individuals of two photosynthetic sea slug species, Plakobranchus ocellatus Van Hasselt, 1824 and Elysia timida Risso, 1818. We find that nuclear-encoded, algal-derived genes specific to photosynthetic function are expressed neither in P. ocellatus nor in E. timida. Despite their dramatic plastid longevity, these photosynthetic sacoglossan slugs do not express genes acquired from algal nuclei in order to maintain plastid function
OGLE-2005-BLG-018: Characterization of Full Physical and Orbital Parameters of a Gravitational Binary Lens
We present the analysis result of a gravitational binary-lensing event
OGLE-2005-BLG-018. The light curve of the event is characterized by 2 adjacent
strong features and a single weak feature separated from the strong features.
The light curve exhibits noticeable deviations from the best-fit model based on
standard binary parameters. To explain the deviation, we test models including
various higher-order effects of the motions of the observer, source, and lens.
From this, we find that it is necessary to account for the orbital motion of
the lens in describing the light curve. From modeling of the light curve
considering the parallax effect and Keplerian orbital motion, we are able to
measure not only the physical parameters but also a complete orbital solution
of the lens system. It is found that the event was produced by a binary lens
located in the Galactic bulge with a distance kpc from the Earth.
The individual lens components with masses and are separated with a semi-major axis of AU and
orbiting each other with a period yr. The event demonstrates
that it is possible to extract detailed information about binary lens systems
from well-resolved lensing light curves.Comment: 19 pages, 6 figure
Limits on Stellar and Planetary Companions in Microlensing Event OGLE-1998-BUL-14
We present the PLANET photometric data set for \ob14, a high magnification
() event alerted by the OGLE collaboration toward the
Galactic bulge in 1998. The PLANET data set consists a total of 461 I-band and
139 band points, the majority of which was taken over a three month period.
The median sampling interval during this period is about 1 hour, and the
scatter over the peak of the event is 1.5%. The excellent data
quality and high maximum magnification of this event make it a prime candidate
to search for the short duration, low amplitude perturbations that are
signatures of a planetary companion orbiting the primary lens. The observed
light curve for \ob14 is consistent with a single lens (no companion) within
photometric uncertainties. We calculate the detection efficiency of the light
curve to lensing companions as a function of the mass ratio and angular
separation of the two components. We find that companions of mass ratio are ruled out at the 95% confidence level for projected separations
between 0.4-2.4 \re, where \re is the Einstein ring radius of the primary
lens. Assuming that the primary is a G-dwarf with \re\sim3 {\rm AU} our
detection efficiency for this event is for a companion with the mass
and separation of Jupiter and for a companion with the mass and
separation of Saturn. Our efficiencies for planets like those around Upsilon
And and 14 Her are > 75%.Comment: Data available at http://www.astro.rug.nl/~planet/planetpapers.html
20 pages, 10 figures. Minor changes. ApJ, accepte
MOA-2009-BLG-387Lb: A massive planet orbiting an M dwarf
We report the discovery of a planet with a high planet-to-star mass ratio in
the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations
over a 12-day interval, one of the longest for any planetary event. The host is
an M dwarf, with a mass in the range 0.07 M_sun < M_host < 0.49M_sun at 90%
confidence. The planet-star mass ratio q = 0.0132 +- 0.003 has been measured
extremely well, so at the best-estimated host mass, the planet mass is m_p =
2.6 Jupiter masses for the median host mass, M = 0.19 M_sun. The host mass is
determined from two "higher order" microlensing parameters. One of these, the
angular Einstein radius \theta_E = 0.31 +- 0.03 mas, is very well measured, but
the other (the microlens parallax \pi_E, which is due to the Earth's orbital
motion) is highly degenate with the orbital motion of the planet. We
statistically resolve the degeneracy between Earth and planet orbital effects
by imposing priors from a Galactic model that specifies the positions and
velocities of lenses and sources and a Kepler model of orbits. The 90%
confidence intervals for the distance, semi-major axis, and period of the
planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7AU, and 3.8 yr < P < 7.6
yr, respectively.Comment: 20 pages including 8 figures. A&A 529 102 (2011
Interpretation of Strong Short-Term Central Perturbations in the Light Curves of Moderate-Magnification Microlensing Events
To improve the planet detection efficiency, current planetary microlensing
experiments are focused on high-magnification events searching for planetary
signals near the peak of lensing light curves. However, it is known that
central perturbations can also be produced by binary companions and thus it is
important to distinguish planetary signals from those induced by binary
companions. In this paper, we analyze the light curves of microlensing events
OGLE-2007-BLG-137/MOA-2007-BLG-091, OGLE-2007-BLG-355/MOA-2007-BLG-278, and
MOA-2007-BLG-199/OGLE-2007-BLG-419, for all of which exhibit short-term
perturbations near the peaks of the light curves. From detailed modeling of the
light curves, we find that the perturbations of the events are caused by binary
companions rather than planets. From close examination of the light curves
combined with the underlying physical geometry of the lens system obtained from
modeling, we find that the short time-scale caustic-crossing feature occurring
at a low or a moderate base magnification with an additional secondary
perturbation is a typical feature of binary-lens events and thus can be used
for the discrimination between the binary and planetary interpretations.Comment: 17 pages, 4 figures, 1 tabl
- …