14 research outputs found

    INSGFP/w human embryonic stem cells facilitate isolation of in vitro derived insulin-producing cells

    Get PDF
    AIMS/HYPOTHESIS: We aimed to generate human embryonic stem cell (hESC) reporter lines that would facilitate the characterisation of insulin-producing (INSâș) cells derived in vitro. METHODS: Homologous recombination was used to insert sequences encoding green fluorescent protein (GFP) into the INS locus, to create reporter cell lines enabling the prospective isolation of viable INSâș cells. RESULTS: Differentiation of INS(GFP/w) hESCs using published protocols demonstrated that all GFPâș cells co-produced insulin, confirming the fidelity of the reporter gene. INS-GFPâș cells often co-produced glucagon and somatostatin, confirming conclusions from previous studies that early hESC-derived insulin-producing cells were polyhormonal. INS(GFP/w) hESCs were used to develop a 96-well format spin embryoid body (EB) differentiation protocol that used the recombinant protein-based, fully defined medium, APEL. Like INS-GFPâș cells generated with other methods, those derived using the spin EB protocol expressed a suite of pancreatic-related transcription factor genes including ISL1, PAX6 and NKX2.2. However, in contrast with previous methods, the spin EB protocol yielded INS-GFPâș cells that also co-expressed the beta cell transcription factor gene, NKX6.1, and comprised a substantial proportion of monohormonal INSâș cells. CONCLUSIONS/INTERPRETATION: INS(GFP/w) hESCs are a valuable tool for investigating the nature of early INSâș progenitors in beta cell ontogeny and will facilitate the development of novel protocols for generating INSâș cells from differentiating hESCs

    Interneurons from Embryonic Development to Cell-Based Therapy

    No full text
    Many neurologic and psychiatric disorders are marked by imbalances between neural excitation and inhibition. In the cerebral cortex, inhibition is mediated largely by GABAergic (γ-aminobutyric acid–secreting) interneurons, a cell type that originates in the embryonic ventral telencephalon and populates the cortex through long-distance tangential migration. Remarkably, when transplanted from embryos or in vitro culture preparations, immature interneurons disperse and integrate into host brain circuits, both in the cerebral cortex and in other regions of the central nervous system. These features make interneuron transplantation a powerful tool for the study of neurodevelopmental processes such as cell specification, cell death, and cortical plasticity. Moreover, interneuron transplantation provides a novel strategy for modifying neural circuits in rodent models of epilepsy, Parkinson’s disease, mood disorders, and chronic pain

    SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development

    No full text
    The study of human cardiogenesis would benefit from a detailed cell lineage fate map akin to that established for the haematopoietic lineages. Here we sought to define cell lineage relationships based on the expression of NKX2-5 and the cell surface markers VCAM1, SIRPA and CD34 during human cardiovascular development. Expression of NKX2-5GFP was used to identify cardiac progenitors and cardiomyocytes generated during the differentiation of NKX2-5GFP/w human embryonic stem cells (hESCs). Cardiovascular cell lineages sub-fractionated on the basis of SIRPA, VCAM1 and CD34 expression were assayed for differentiation potential and gene expression. The NKX2-5posCD34pos population gave rise to endothelial cells that rapidly lost NKX2-5 expression in culture. Conversely, NKX2-5 expression was maintained in myocardial committed cells, which progressed from being NKX2-5posSIRPApos to NKX2-5posSIRPAposVCAM1pos. Up-regulation of VCAM1 was accompanied by the expression of myofilament markers and reduced clonal capacity, implying a restriction of cell fate potential. Combinatorial expression of NKX2-5, SIRPA, VCAM1 and CD34 can be used to define discrete stages of cardiovascular cell lineage differentiation. These markers identify specific stages of cardiomyocyte and endothelial lineage commitment and, thus provide a scaffold for establishing a fate map of early human cardiogenesis

    Stem Cells on the Brain: Modeling Neurodevelopmental and Neurodegenerative Diseases Using Human Induced Pluripotent Stem Cells

    No full text
    corecore