3,667 research outputs found

    Emergency escape system uses self-braking mechanism on fixed cable

    Get PDF
    Slide-wire system with a twist level slide device incorporates automatic descent and braking for the safe and rapid evacuation of personnel from tall structures. This device is used on any tall structure that might require emergency evacuation. It is also used to transfer materials and equipment

    Probing Solar Convection

    Get PDF
    In the solar convection zone acoustic waves are scattered by turbulent sound speed fluctuations. In this paper the scattering of waves by convective cells is treated using Rytov's technique. Particular care is taken to include diffraction effects which are important especially for high-degree modes that are confined to the surface layers of the Sun. The scattering leads to damping of the waves and causes a phase shift. Damping manifests itself in the width of the spectral peak of p-mode eigenfrequencies. The contribution of scattering to the line widths is estimated and the sensitivity of the results on the assumed spectrum of the turbulence is studied. Finally the theoretical predictions are compared with recently measured line widths of high-degree modes.Comment: 26 pages, 7 figures, accepted by MNRA

    On the similarity of Information Energy to Dark Energy

    Full text link
    Information energy is shown here to have properties similar to those of dark energy. The energy associated with each information bit of the universe is found to be defined identically to the characteristic energy of a cosmological constant. Two independent methods are used to estimate the universe information content of ~10^91 bits, a value that provides an information energy total comparable to that of the dark energy. Information energy is also found to have a significantly negative equation of state parameter, w < -0.4, and thus exerts a negative pressure, similar to dark energy.Comment: 5 pages, no figures, no table

    Detecting solar g-modes with ASTROD

    Full text link
    We present an up-to-date estimate for the prospect of using the Astrodynamical Space Test of Relativity using Optical Devices (ASTROD) for an unambiguous detection of solar g modes (f < 400 micro Hertz) through their gravitational signature. There are currently two major efforts to detect low-frequency gravitational effects, ASTROD and the Laser Interferometer Space Antenna (LISA). Using the most recent g mode surface amplitude estimates, both observational and theoretical, it is unclear whether LISA will be capable of successfully detecting these modes. The ASTROD project may be better suited for detection as its sensitivity curve is shifted towards lower frequencies with the best sensitivity occurring in the range 100-300 micro Hertz.Comment: HELAS II international conference "Helioseismology, asteroseismology and MHD connections", 20-24 August 2007, Goettingen, German

    Gravitational Helioseismology?

    Get PDF
    The magnitudes of the external gravitational perturbations associated with the normal modes of the Sun are evaluated to determine whether these solar oscillations could be observed with the proposed Laser Interferometer Space Antenna (LISA), a network of satellites designed to detect gravitational radiation. The modes of relevance to LISA---the l=2l=2, low-order pp, ff and gg-modes---have not been conclusively observed to date. We find that the energy in these modes must be greater than about 1030ergs10^{30} \rm{ergs} in order to be observable above the LISA detector noise. These mode energies are larger than generally expected, but are much smaller than the current observational upper limits. LISA may be confusion-limited at the relevant frequencies due to the galactic background from short-period white dwarf binaries. Present estimates of the number of these binaries would require the solar modes to have energies above about 1033ergs10^{33} \rm{ergs} to be observable by LISA.Comment: 8 pages; prepared with REVTEX 3.0 LaTeX macro

    Zonal shear and super-rotation in a magnetized spherical Couette flow experiment

    Get PDF
    We present measurements performed in a spherical shell filled with liquid sodium, where a 74 mm-radius inner sphere is rotated while a 210 mm-radius outer sphere is at rest. The inner sphere holds a dipolar magnetic field and acts as a magnetic propeller when rotated. In this experimental set-up called DTS, direct measurements of the velocity are performed by ultrasonic Doppler velocimetry. Differences in electric potential and the induced magnetic field are also measured to characterize the magnetohydrodynamic flow. Rotation frequencies of the inner sphere are varied between -30 Hz and +30 Hz, the magnetic Reynolds number based on measured sodium velocities and on the shell radius reaching to about 33. We have investigated the mean axisymmetric part of the flow, which consists of differential rotation. Strong super-rotation of the fluid with respect to the rotating inner sphere is directly measured. It is found that the organization of the mean flow does not change much throughout the entire range of parameters covered by our experiment. The direct measurements of zonal velocity give a nice illustration of Ferraro's law of isorotation in the vicinity of the inner sphere where magnetic forces dominate inertial ones. The transition from a Ferraro regime in the interior to a geostrophic regime, where inertial forces predominate, in the outer regions has been well documented. It takes place where the local Elsasser number is about 1. A quantitative agreement with non-linear numerical simulations is obtained when keeping the same Elsasser number. The experiments also reveal a region that violates Ferraro's law just above the inner sphere.Comment: Phys Rev E, in pres

    Stellar turbulence and mode physics

    Full text link
    An overview of selected topical problems on modelling oscillation properties in solar-like stars is presented. High-quality oscillation data from both space-borne intensity observations and ground-based spectroscopic measurements provide first tests of the still-ill-understood, superficial layers in distant stars. Emphasis will be given to modelling the pulsation dynamics of the stellar surface layers, the stochastic excitation processes and the associated dynamics of the turbulent fluxes of heat and momentum.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar modelling', eds M. Marconi, D. Cardini, M. P. Di Mauro, Astrophys. Space Sci., in the pres

    Characterisation of the Mopra Radio Telescope at 16--50 GHz

    Full text link
    We present the results of a programme of scanning and mapping observations of astronomical masers and Jupiter designed to characterise the performance of the Mopra Radio Telescope at frequencies between 16-50 GHz using the 12-mm and 7-mm receivers. We use these observations to determine the telescope beam size, beam shape and overall telescope beam efficiency as a function of frequency. We find that the beam size is well fit by λ\lambda/DD over the frequency range with a correlation coefficient of ~90%. We determine the telescope main beam efficiencies are between ~48-64% for the 12-mm receiver and reasonably flat at ~50% for the 7-mm receiver. Beam maps of strong H2_2O (22 GHz) and SiO masers (43 GHz) provide a means to examine the radial beam pattern of the telescope. At both frequencies the radial beam pattern reveals the presence of three components, a central `core', which is well fit by a Gaussian and constitutes the telescopes main beam, and inner and outer error beams. At both frequencies the inner and outer error beams extend out to approximately 2 and 3.4 times the full-width half maximum of the main beam respectively. Sources with angular sizes a factor of two or more larger than the telescope main beam will couple to the main and error beams, and therefore the power contributed by the error beams needs to be considered. From measurements of the radial beam power pattern we estimate the amount of power contained in the inner and outer error beams is of order one-fifth at 22 GHz rising slightly to one-third at 43 GHz.Comment: Accepted for publication in PAS

    Prospects for asteroseismology

    Full text link
    The observational basis for asteroseismology is being dramatically strengthened, through more than two years of data from the CoRoT satellite, the flood of data coming from the Kepler mission and, in the slightly longer term, from dedicated ground-based facilities. Our ability to utilize these data depends on further development of techniques for basic data analysis, as well as on an improved understanding of the relation between the observed frequencies and the underlying properties of the stars. Also, stellar modelling must be further developed, to match the increasing diagnostic potential of the data. Here we discuss some aspects of data interpretation and modelling, focussing on the important case of stars with solar-like oscillations.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar modelling', eds M. Marconi, D. Cardini & M. P. Di Mauro, Astrophys. Space Sci., in the press Revision: correcting abscissa labels on Figs 1 and
    corecore