5 research outputs found

    Unexpected biotic resilience on the Japanese seafloor caused by the 2011 Tƍhoku-Oki tsunami

    Get PDF
    On March 11th, 2011 the Mw 9.0 2011 Tƍhoku-Oki earthquake resulted in a tsunami which caused major devastation in coastal areas. Along the Japanese NE coast, tsunami waves reached maximum run-ups of 40 m, and travelled kilometers inland. Whereas devastation was clearly visible on land, underwater impact is much more difficult to assess. Here, we report unexpected results obtained during a research cruise targeting the seafloor off Shimokita (NE Japan), shortly (five months) after the disaster. The geography of the studied area is characterized by smooth coastline and a gradually descending shelf slope. Although high-energy tsunami waves caused major sediment reworking in shallow-water environments, investigated shelf ecosystems were characterized by surprisingly high benthic diversity and showed no evidence of mass mortality. Conversely, just beyond the shelf break, the benthic ecosystem was dominated by a low-diversity, opportunistic fauna indicating ongoing colonization of massive sand-bed deposits.Peer reviewe

    Living (stained) deep-sea Foraminifera off Hachinohe (NE Japan, Western Pacific): environmental interplay in oxygen-depleted ecosystems

    Get PDF
    International audienceLive (Rose-Bengal stained) deep-sea foraminiferal faunas have been studied at five stations between 500–2000-m depth along the NE Japanese margin (western Pacific) to understand how complex environmental conditions (e.g., oxygen depletion, organic matter) control their structure (i.e., diversity, standing stocks, and microhabitats). All stations are characterized by silty sediments with no evidence of recent physical disturbances. The three stations located between 760–1250 m are bathed by dysoxic bottom waters (2.2% DW), only the oxygen-depleted sites are characterized by higher concentrations of sugars, lipids, and enzymatically hydrolysable amino acids (EHAA). Sedimentary contents in chlorophyllic pigments decrease with water depth without any major change in their freshness (i.e., [Chl a/(Chl a + Pheo a)] ratios). Both Uvigerina akitaensis and Bolivina spissa are restricted to the stations bathed by dysoxic waters, proving their oxygen-depletion tolerance. In such conditions, both phytophagous taxa are obviously able to take advantage of labile organic compounds (e.g., lipids and EHAA) contained in phytodetritus. Nonionella stella and Rutherfordoides cornuta survive in oxygen-depleted environments probably via alternative metabolic pathways (e.g., denitrification ability) and a large flexibility in trophic requirements. At stations where oxygen availability is higher (i.e., >70 ÎŒmol/L in bottom water) and where bioavailable organic compounds are slightly less abundant, diversity indices remain low, and more competitive species (e.g., Uvigerina curticosta, U. cf. U. graciliformis, Nonionella globosa, Nonionellina labradorica, and Elphidium batialis) are dominant
    corecore