49 research outputs found

    Prenatal BoBsTM in the cytogenetic analysis of products of spontaneous miscarriage

    Get PDF
    Background. Fifty percent of spontaneous miscarriages (SMs) are attributed to chromosomal abnormalities. Cytogenetic analysis is an important tool for patient counselling and assessment of the risk of recurrence in future pregnancies. Conventional karyotyping has been the gold standard for chromosomal investigation of products of conception (POC), but it has limitations due to sample maceration, culture failure and maternal cell contamination. Molecular cytogenetic approaches have therefore been developed and found valuable in the cytogenetic investigation of these samples. The Prenatal BoBsTM and KaryoLite BoBsTM, based on the newly developed BACs-on-BeadsTM technology, have been described as reliable tests for rapid detection of aneuploidies in prenatal and POC samples, respectively.Objective. To describe our clinical experience of routine screening of POC samples with Prenatal BoBsTM, the test used by our laboratory in France.Methods. Seventeen samples collected at the University Hospital of Sidi Bel Abbès (Western Algeria) and a further 60 from the University Hospital of Clermont-Ferrand (France) were analysed (19 chorionic villi from products of curettage, 12 placentas, 9 amniotic cells and 37 biopsy specimens). All were screened for the frequent aneuploidies (chromosomes 13, 18, 21, X and Y) in addition to nine microdeletion/ microduplication syndrome regions by Prenatal BoBsTM. Standard karyotyping was performed on 51 samples, but failed in 38 cases.Results. Prenatal BoBsTM identified one trisomy 21 and one deletion of 17p13.3. Furthermore, it provided a conclusive result in cases of culture failure (n=38) and in samples with macerated tissue (n=19). The overall failure rate was 11.4%.Conclusions. Prenatal BoBsTM is a promising technology that represents a fast, sensitive and robust alternative to routine screening for chromosomal abnormality in products of SM. Furthermore, it overcomes the limitations of conventional karyotyping and current molecular cytogenetic techniques

    SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome.

    Get PDF
    International audienceBACKGROUND: Mutations in SCN5A are identified in approximately 20% to 30% of probands affected by Brugada syndrome (BrS). However, in familial studies, the relationship between SCN5A mutations and BrS remains poorly understood. The aim of this study was to investigate the association of SCN5A mutations and BrS in a group of large genotyped families. METHODS AND RESULTS: Families were included if at least 5 family members were carriers of the SCN5A mutation, which was identified in the proband. Thirteen large families composed of 115 mutation carriers were studied. The signature type I ECG was present in 54 mutation carriers (BrS-ECG+; 47%). In 5 families, we found 8 individuals affected by BrS but with a negative genotype (mutation-negative BrS-ECG+). Among these 8 mutation-negative BrS-ECG+ individuals, 3, belonging to 3 different families, had a spontaneous type I ECG, whereas 5 had a type I ECG only after the administration of sodium channel blockers. One of these 8 individuals had also experienced syncope. Mutation carriers had, on average, longer PR and QRS intervals than noncarriers, demonstrating that these mutations exerted functional effects. CONCLUSIONS: Our results suggest that SCN5A mutations are not directly causal to the occurrence of a BrS-ECG+ and that genetic background may play a powerful role in the pathophysiology of BrS. These findings add further complexity to concepts regarding the causes of BrS, and are consistent with the emerging notion that the pathophysiology of BrS includes various elements beyond mutant sodium channels

    Potassium channel gene mutations rarely cause atrial fibrillation

    Get PDF
    BACKGROUND: Mutations in several potassium channel subunits have been associated with rare forms of atrial fibrillation. In order to explore the role of potassium channels in inherited typical forms of the arrhythmia, we have screened a cohort of patients from a referral clinic for mutations in the channel subunit genes implicated in the arrhythmia. We sought to determine if mutations in KCNJ2 and KCNE1-5 are a common cause of atrial fibrillation. METHODS: Serial patients with lone atrial fibrillation or atrial fibrillation with hypertension were enrolled between June 1, 2001 and January 6, 2005. Each patient underwent a standardized interview and physical examination. An electrocardiogram, echocardiogram and blood sample for genetic analysis were also obtained. Patients with a family history of AF were screened for mutations in KCNJ2 and KCNE1-5 using automated sequencing. RESULTS: 96 patients with familial atrial fibrillation were enrolled. Eighty-three patients had lone atrial fibrillation and 13 had atrial fibrillation and hypertension. Patients had a mean age of 56 years at enrollment and 46 years at onset of atrial fibrillation. Eighty-one percent of patients had paroxysmal atrial fibrillation at enrollment. Unlike patients with an activating mutation in KCNQ1, the patients had a normal QT(c )interval with a mean of 412 ± 42 ms. Echocardiography revealed a normal mean ejection fraction of 62.0 ± 7.2 % and mean left atrial dimension of 39.9 ± 7.0 mm. A number of common polymorphisms in KCNJ2 and KCNE1-5 were identified, but no mutations were detected. CONCLUSION: Mutations in KCNJ2 and KCNE1-5 rarely cause typical atrial fibrillation in a referral clinic population

    Whole-genome amplified DNA from stored dried blood spots is reliable in high resolution melting curve and sequencing analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of dried blood spots (DBS) samples in genomic workup has been limited by the relative low amounts of genomic DNA (gDNA) they contain. It remains to be proven that whole genome amplified DNA (wgaDNA) from stored DBS samples, constitutes a reliable alternative to gDNA.</p> <p>We wanted to compare melting curves and sequencing results from wgaDNA derived from DBS samples with gDNA derived from whole blood.</p> <p>Methods</p> <p>gDNA was extracted from whole blood obtained from 10 patients with lone atrial fibrillation (mean age 22.3 years). From their newborn DBS samples, stored at -24°C, genomic DNA was extracted and whole-genome amplified in triplicates. Using high resolution melting curve analysis and direct sequencing in both wgaDNA and gDNA samples, all coding regions and adjacent intron regions of the genes <it>SCN5A </it>and <it>KCNA5 </it>were investigated.</p> <p>Results</p> <p>Altered melting curves was present in 85 of wgaDNA samples and 81 of gDNA samples. Sequence analysis identified a total of 31 variants in the 10 wgaDNA samples. The same 31 variants were found in the exact same pattern of samples in the gDNA group. There was no false positive or negative sequence variation in the wgaDNA group.</p> <p>Conclusions</p> <p>The use of DNA amplified in triplicates from DBS samples is reliable and can be used both for high resolution curve melting analysis as well as direct sequence analysis. DBS samples therefore can serve as an alternative to whole blood in sequence analysis.</p

    CC9 Livestock-Associated Staphylococcus aureus Emerges in Bloodstream Infections in French Patients Unconnected With Animal Farming

    Get PDF
    We report 4 bloodstream infections associated with CC9 agr type II Staphylococcus aureus in individuals without animal exposure. We demonstrate, by microarray analysis, the presence of egc cluster, fnbA, cap operon, lukS, set2, set12, splE, splD, sak, epiD, and can, genomic features associated with a high virulence potential in human

    Molecular characterization of occult hepatitis B virus infection in patients with end-stage liver disease in Colombia.

    Get PDF
    ABSTARCT: Hepatitis B virus (HBV) occult infection (OBI) is a risk factor to be taken into account in transfusion, hemodialysis and organ transplantation. The aim of this study was to identify and characterize at the molecular level OBI cases in patients with end-stage liver disease. METHODS: Sixty-six liver samples were obtained from patients with diagnosis of end-stage liver disease submitted to liver transplantation in Medellin (North West, Colombia). Samples obtained from patients who were negative for the surface antigen of HBV (n = 50) were tested for viral DNA detection by nested PCR for ORFs S, C, and X and confirmed by Southern-Blot. OBI cases were analyzed by sequencing the viral genome to determine the genotype and mutations; additionally, viral genome integration events were examined by the Alu-PCR technique. RESULTS: In five cases out of 50 patients (10%) the criteria for OBI was confirmed. HBV genotype F (subgenotypes F1 and F3), genotype A and genotype D were characterized in liver samples. Three integration events in chromosomes 5q14.1, 16p13 and 20q12 affecting Receptor-type tyrosine-protein phosphatase T, Ras Protein Specific Guanine Nucleotide Releasing Factor 2, and the zinc finger 263 genes were identified in two OBI cases. Sequence analysis of the viral genome of the 5 OBI cases showed several punctual missense and nonsense mutations affecting ORFs S, P, Core and X. CONCLUSIONS: This is the first characterization of OBI in patients with end-stage liver disease in Colombia. The OBI cases were identified in patients with HCV infection or cryptogenic cirrhosis. The integration events (5q14.1, 16p13 and 20q12) described in this study have not been previously reported. Further studies are required to validate the role of mutations and integration events in OBI pathogenesis
    corecore