112 research outputs found

    Raman phonon emission in a driven double quantum dot

    Get PDF
    The compound semiconductor gallium-arsenide (GaAs) provides an ultra-clean platform for storing and manipulating quantum information, encoded in the charge or spin states of electrons confined in nanostructures. The absence of inversion symmetry in the zinc-blende crystal structure of GaAs however, results in a strong piezoelectric interaction between lattice acoustic phonons and qubit states with an electric dipole, a potential source of decoherence during charge-sensitive operations. Here we report phonon generation in a GaAs double quantum dot, configured as a single- or two-electron charge qubit, and driven by the application of microwaves via surface gates. In a process that is a microwave analogue of the Raman effect, phonon emission produces population inversion of the two-level system and leads to rapid decoherence of the qubit when the microwave energy exceeds the level splitting. Comparing data with a theoretical model suggests that phonon emission is a sensitive function of the device geometry

    Dephasing in Open Quantum Dots

    Full text link
    Shape-averaged magnetoconductance (weak localization) is used for the first time to obtain the electron phase coherence time τϕ\tau_{\phi} in open ballistic GaAs quantum dots. Values for τϕ\tau_{\phi} in the range of temperature T from 0.335 to 4 K are found to be independent of dot area, and are not consistent with the τϕT2\tau_{\phi} \propto T^{-2} behavior expected for isolated dots. Surprisingly, τϕ(T)\tau_{\phi}(T) agrees quantitatively with the predicted dephasing time for disordered two-dimensional electron systems.Comment: 9 pages, 4 figure

    Quantum Chaos in Open versus Closed Quantum Dots: Signatures of Interacting Particles

    Full text link
    This paper reviews recent studies of mesoscopic fluctuations in transport through ballistic quantum dots, emphasizing differences between conduction through open dots and tunneling through nearly isolated dots. Both the open dots and the tunnel-contacted dots show random, repeatable conductance fluctuations with universal statistical proper-ties that are accurately characterized by a variety of theoretical models including random matrix theory, semiclassical methods and nonlinear sigma model calculations. We apply these results in open dots to extract the dephasing rate of electrons within the dot. In the tunneling regime, electron interaction dominates transport since the tunneling of a single electron onto a small dot may be sufficiently energetically costly (due to the small capacitance) that conduction is suppressed altogether. How interactions combine with quantum interference are best seen in this regime.Comment: 15 pages, 11 figures, PDF 2.1 format, to appear in "Chaos, Solitons & Fractals

    Multicomponent theory of buoyancy instabilities in magnetized plasmas: The case of magnetic field parallel to gravity

    Full text link
    We investigate electromagnetic buoyancy instabilities of the electron-ion plasma with the heat flux based on not the magnetohydrodynamic (MHD) equations, but using the multicomponent plasma approach when the momentum equations are solved for each species. We consider a geometry in which the background magnetic field, gravity, and stratification are directed along one axis. The nonzero background electron thermal flux is taken into account. Collisions between electrons and ions are included in the momentum equations. No simplifications usual for the one-fluid MHD-approach in studying these instabilities are used. We derive a simple dispersion relation, which shows that the thermal flux perturbation generally stabilizes an instability for the geometry under consideration. This result contradicts to conclusion obtained in the MHD-approach. We show that the reason of this contradiction is the simplified assumptions used in the MHD analysis of buoyancy instabilities and the role of the longitudinal electric field perturbation which is not captured by the ideal MHD equations. Our dispersion relation also shows that the medium with the electron thermal flux can be unstable, if the temperature gradients of ions and electrons have the opposite signs. The results obtained can be applied to the weakly collisional magnetized plasma objects in laboratory and astrophysics.Comment: Accepted for publication in Astrophysics & Space Scienc

    Scanned Potential Microscopy of Edge States in a Quantum Hall Liquid

    Full text link
    Using a low-temperature atomic force microscope as a local voltmeter, we measure the Hall voltage profile in a quantum Hall conductor in the presence of a gate-induced non-equilibrium edge state population at n=3. We observe sharp voltage drops at the sample edges which are suppressed by re-equilibrating the edge states.Comment: 4 pages, 4 figs. To be published in Physica E (Proceedings of the 13th International Conference on the Properties of 2D Systems

    Statistical Theory of Spin Relaxation and Diffusion in Solids

    Full text link
    A comprehensive theoretical description is given for the spin relaxation and diffusion in solids. The formulation is made in a general statistical-mechanical way. The method of the nonequilibrium statistical operator (NSO) developed by D. N. Zubarev is employed to analyze a relaxation dynamics of a spin subsystem. Perturbation of this subsystem in solids may produce a nonequilibrium state which is then relaxed to an equilibrium state due to the interaction between the particles or with a thermal bath (lattice). The generalized kinetic equations were derived previously for a system weakly coupled to a thermal bath to elucidate the nature of transport and relaxation processes. In this paper, these results are used to describe the relaxation and diffusion of nuclear spins in solids. The aim is to formulate a successive and coherent microscopic description of the nuclear magnetic relaxation and diffusion in solids. The nuclear spin-lattice relaxation is considered and the Gorter relation is derived. As an example, a theory of spin diffusion of the nuclear magnetic moment in dilute alloys (like Cu-Mn) is developed. It is shown that due to the dipolar interaction between host nuclear spins and impurity spins, a nonuniform distribution in the host nuclear spin system will occur and consequently the macroscopic relaxation time will be strongly determined by the spin diffusion. The explicit expressions for the relaxation time in certain physically relevant cases are given.Comment: 41 pages, 119 Refs. Corrected typos, added reference

    Observation of cyclotron-resonance in the photoconductivity of two-dimensional electrons

    Get PDF
    Contains fulltext : 115610.pdf (publisher's version ) (Open Access

    Observation of oscillatory linewidth in the cyclotron-resonance of GaAs-AlxGa1-xAs heterostructures

    Get PDF
    Contains fulltext : 115600.pdf (publisher's version ) (Open Access
    corecore