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Raman phonon emission in a driven double
quantum dot
J.I. Colless1,*, X.G. Croot1,*, T.M. Stace2, A.C. Doherty1, S.D. Barrett3, H. Lu4, A.C. Gossard4 & D.J. Reilly1

The compound semiconductor gallium–arsenide (GaAs) provides an ultra-clean platform for

storing and manipulating quantum information, encoded in the charge or spin states of

electrons confined in nanostructures. The absence of inversion symmetry in the zinc-blende

crystal structure of GaAs however, results in a strong piezoelectric interaction between lattice

acoustic phonons and qubit states with an electric dipole, a potential source of decoherence

during charge-sensitive operations. Here we report phonon generation in a GaAs double

quantum dot, configured as a single- or two-electron charge qubit, and driven by the

application of microwaves via surface gates. In a process that is a microwave analogue of the

Raman effect, phonon emission produces population inversion of the two-level system and

leads to rapid decoherence of the qubit when the microwave energy exceeds the level

splitting. Comparing data with a theoretical model suggests that phonon emission is a

sensitive function of the device geometry.
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D
evices based on gallium–arsenide (GaAs) are advanta-
geous for hosting qubits because the electron’s small
effective mass in this material produces a large level

splitting, the lack of valley degeneracy in the band structure
simplifies operation, and the clean epitaxial interface used to
confine electrons leads to inherently low charge noise1,2. A
potential drawback of GaAs and other group III–V compounds3

is the presence of nuclear spins in the host lattice, which can
rapidly dephase electron spin states4. Dynamical-decoupling
techniques5 however, have recently addressed dephasing from
nuclei, demonstrating6 that spin coherence can be preserved for
times long enough that it is now important to address alternate
decoherence mechanisms such as residual charge noise and
processes that incoherently couple electrons to phonons7,8, either
directly9, or via the spin orbit interaction10–12. In this respect, the
piezoelectric nature of GaAs, while advantageous for shuttling
electrons long distances13,14, also opens a channel for enhanced
relaxation and dephasing, in particular, for qubit states with a
charge dipole15–19. Such phonon generation mechanisms have
recently been examined in the context of readout backaction19

and compared with transport measurements of InAs
nanowires20,21 and graphene21.

Here we investigate a phonon emission process, distinct from
the usual phonon-mediated spontaneous relaxation (T1-type) that
leads to the qubit decaying to the ground state. This alternate
mechanism additionally limits charge coherence in GaAs and
complicates microwave control, even in ideal structures at zero

temperature. In a microwave version of the well-known optical
technique of Raman spectroscopy, this mechanism provides a
means of detecting the phonon spectral density created by the
unique nanoscale device geometry. Our experimental results are
in qualitative agreement with a theoretical model based on a non-
Markovian master equation and we suggest approaches to
suppress the electron–phonon coupling, which could further
improve coherence times and controllability of these qubit
systems.

Results
Microwave spectroscopy. Our system is a charge qubit with one
or two electrons in a double quantum dot, controlled by resonant
microwaves22–24, which drive Rabi oscillations of the electron
between the ground and excited states, as shown schematically in
Fig. 1a. In the detuned regime where the microwave energy
exceeds the qubit level splitting (see Fig. 1b), we suggest that this
system undergoes driven phonon emission, a process which
interrupts coherent oscillations and leads to population inversion,
as predicted theoretically25,26. A micrograph of our double
quantum dot device is shown in Fig. 1c, including a proximal rf-
quantum point contact27 (rf-QPC), which is used as a sensor to
read out the charge state of the system (see Fig. 1d and Methods).
Gate voltages VL and VR control the detuning e of energy levels
between the two dots. For e 44 0 the ground and excited states
of the qubit correspond to localizing the electron mostly in the
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Figure 1 | Few-electron double quantum dot under microwave excitation. (a) Cartoon of the double dot potential showing a single-electron wavefunction

coherently tunnelling between the ground |gS and excited state |eS under microwave excitation. In a microwave analogue of the Raman effect,

photon-stimulated emission of phonons (ripples) is modulated by the mode spectrum set by the intra-dot spacing, which for our device is B280 nm.

(b) Energy-level diagram for the single-electron charge qubit showing the stimulated-phonon emission process (light blue) that leads to asymmetric line

shapes and population inversion. At a later time, spontaneous emission of a phonon (orange) leads to qubit relaxation. Grey shading depicts virtual

states. (c) Micrograph of the double dot device showing surface gates and ohmic contacts to the electron gas (crossed squares). Scale bar, 300 nm.

Microwaves are applied to the plunger (P) or centre (C) gate. The conductance GQPC of a proximal rf-QPC detects the average charge state of the dot and

modulates the amount of reflected-rf power, Prf, from a resonant-tank circuit, enabling fast readout (see Methods for details). (d) Charge-stability

diagram of the double dot, detected using the rf-QPC. Labels (n,m) denote the number of electrons in the left and right quantum dots, respectively. The

demodulated signal Vrf is proportional to the QPC conductance and thus the double dot charge configuration. Gate voltages VL and VR are applied to

gates L and R in (c). Red arrows indicate the direction of allowed transitions under resonant-microwave excitation.
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left (1,0) or right (0,1) dot, respectively, (this is reversed for e
oo 0). We apply microwaves with an energy close to the qubit
splitting at a certain value of e, coherently driving between
ground and excited states. Under these conditions the readout
signal exhibits sidebands that appear as lines in the charge-
stability diagram offset either side from the e¼ 0 transition
(Fig. 2b)). We measure the time-averaged probability P of the
electron being in the (0,1) charge configuration, calibrated such
that P(0,1)¼ 1 for eoo0 and P(0,1)¼ 0 for e440.

Population inversion and spin-dependent transitions. Close
examination of the microwave sideband lineshape reveals that
they are strongly asymmetric and distinct from the characteristic
Lorentzian lineshape expected for a driven two-level system. This
is seen clearly with increasing microwave power in Fig. 2c, which
shows pairs of sidebands corresponding to single- (1g) and two-
(2g) microwave photon processes, positioned either side of the
(1,0)–(0,1) transition. We note that the lineshape of all sidebands
is strongly broadened, mostly on the side closest to e¼ 0, which

we refer to as the blue-detuned side, where the microwave photon
energy exceeds the qubit splitting. Further, at high powers, we
observe population inversion with the amplitude of the micro-
wave sidebands exceeding the saturation value of P(0,1)¼ 0.5
expected for a driven two-level system undergoing Rabi cycles
between the ground and excited state.

Our device can also be configured to the (2,0)–(1,1) charge
transition by adjusting the gate potential to allow two electrons to
occupy the double dot (see Fig. 1d). Under microwave excitation
we again observe sidebands that are strongly asymmetric in their
lineshape. A key difference in the two-electron case however, is
the presence of Pauli-blockade28, which leads to spin-dependent
transitions when driving resonantly with microwaves29. This
behaviour is evident in Fig. 2e–h as a strong suppression in the
sideband amplitude on the (1,1) side of the transition, where e
40. We attribute this suppression to the occupation of a triplet
state, which cannot tunnel to the (0,2) singlet state under
microwave excitation without a spin flip. The maximum height of
the suppressed sideband in (1,1) is set by the ratio of singlets to
triplets, (1:3 - (0.25�P(0,2)¼ 0.5), gives P¼ 0.125). We find
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Figure 2 | Population inversion and asymmetric broadening of microwave spectra. (a) Avoided crossing of the energy levels for the (0,1)–(1,0) transition

under microwave excitation. Blue arrows indicate allowed microwave transitions. (b) Charge-stability diagram showing microwave sidebands on either

side of the (0,1)–(1,0) transition. The slight broadening of the feature near the transition boundaries is owing to microwave excitation to the leads.

(c) Readout probability P(0,1) for an electron in the (0,1) state as a function of detuning E and microwave power, where 0 dB is arbitrarily set to a power that

yields no effect on the data. Microwave frequency f¼ 31.8 GHz, applied to gate C. One- and two-photon sidebands (marked 1g and 2g) are visible.

(d–f), Slices through (c) at different microwave powers, as indicated by the vertical-dashed lines overlaying (c). (g) Energy levels of the two-electron

system under microwave excitation. Blue and red lines indicate different rates for microwave driving when the (0,2) singlet S is the ground state,

verse in (1,1) where the triplets T are present. (h) Stability diagram at the (0,2)–(1,1) transition with microwaves applied. Sidebands are visible in (0,2) but

appear strongly suppressed in (1,1) owing to Pauli spin-blockade. (i) Readout probability P(0,2) for an electron in the (0,2) state as a function of detuning e
and microwave power. Microwave frequency is f¼ 26.7 GHz, applied to gate P. One- and two-photon sidebands (marked 1g and 2g) are visible in

(0,2) but are highly suppressed in the (1,1) regime. With increasing power these sidebands asymmetrically broaden on the blue-detuned side closest to

A¼0. (j–l), Slices through (i) at positions indicated by the dashed lines in (i).
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that this spin-dependent suppression is unchanged for magnetic
fields in the range B¼ 0� 4T. This field dependence is somewhat
in contrast to the recent work by Schreiber et al.,29 where spin
blockade is lifted with microwave excitation, perhaps owing to the
presence of a micro-magnet on the surface of their device.

The asymmetric lineshape of the sidebands and apparent
population inversion is suggestive of the incoherent, Raman-like
process described in references25,26. In this mechanism, a blue-
detuned photon drives the qubit transition, accompanied by the
emission of a phonon, which carries away the residual energy.
The energy (and thus the wavelength) of this phonon is set by the
difference between the microwave photon and qubit energies (see
Fig. 1b). Inversion is predicted to occur if the rate of this photon-
excited process exceeds the relaxation rate of the qubit. We rule
out alternate mechanisms to explain P40.5, such as an
inadvertent-third level, by noting that both sidebands, either
side of e¼ 0, produce the same amount of population inversion.
This would imply equal coupling to the third level from both
quantum dots, which is highly unlikely for these few-electron
devices.

Spectroscopic signature of the phononic environment. In this
Raman picture, the probability for phonon emission is weighted
by the density of available modes subject to the boundary con-
ditions of the nanoscale device geometry. In an effort to uncover
this geometric fingerprint in the lineshape, a signature of the
Raman process, we make use of the high bandwidth of the rf-
QPC-charge detector to rapidly average over many data sets so
that the sidebands can be observed with high resolution, as shown
in Fig. 3a–d for a range of microwave powers. Comparing the
averaged data to the Lorentzian lineshape expected for a weakly-
driven qubit in the Markovian regime30 (solid line), it is evident
that the blue-detuned region of the sideband shows fine, step-like
features26 in the excited-state probability P(0,1) as a function of
detuning. On the ‘red’ side, the data also deviates slightly from the
Lorentzian form and exhibits additional structure. Based on a
comparison to a detailed-theoretical model31, we qualitatively
account for these features as arising from the Raman-like process
that occurs when the driven qubit is strongly coupled to its
phononic environment.

Theoretical model. Our model describes the driven system with a
master equation in which the Rabi frequency is comparable
with the decay rate. To incorporate Raman processes in the

weak-driving limit our model does not make the usual assump-
tion of Markovian dynamics26,30. Taking the Laplace transform
of the von Neumann equation gives a series expansion of
the dynamical steady state, dependent on the microwave
energy detuning, the inter-dot tunnelling rate D, the
electric dipole Rabi frequency O, the microwave-driving
frequency o0, the temperature T, and the spectral density,
J(o)¼ 2p

P
q|gq|2d(o�oq), where gq is the device geometry-

dependent electron–phonon coupling amplitude, oq is the
phonon frequency and o is the transition frequency. Figure 4
highlights the asymmetric lineshape of the sidebands and allows
for a qualitative comparison between the experimental data and
our theoretical model based on the material properties of GaAs
(see Methods for details). Given that the global scaling of the
microwave amplitude is the only free parameter in the model, we
are unable to quantitatively account for all of the features in the
data, particularly in the presence of charge noise. Never-the-less,
the clear asymmetry and step feature on the blue side of the
sideband can be identified in theory and experiment.

Discussion
With this model in hand, we can now make the case that the
Raman-like process indeed accounts for the key features in the
data. We rule out photon emission, as the microwave photon
lifetime for a dipole of size B300 nm is a few milliseconds, orders
of magnitude longer than that for phonon emission30 and
improbable on the timescale of our experiment. In addition to the
population inversion25,26, the presence of a step-like feature on
the blue-detuned side of the resonance is a further signature of
resonantly enhanced phonon coupling. The energy of the emitted
phonon must be given by the difference between the microwave
photon energy and the qubit-excited state (to conserve energy),
and when the corresponding wavelength of this phonon is
commensurate with the inter-dot separation, the electron–
phonon coupling rate is enhanced. The observed spacing of the
step-like feature in our data indicates an inter-dot spacing of
280 nm, which is consistent with the geometry of the surface gates
shown in Fig. 1c, (see equation 1 and discussion in Methods).
Further evidence for the phononic mechanism is given by the
apparent shoulder on the red-side of the sideband, which is
expected from a renormalization of the qubit detuning and Rabi
frequency when the bare electron interacts with the crystal lattice.

There are further simplifications in our model that likely
account for discrepancies with respect to the position and
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Figure 3 | Spectroscopic signature of the phononic environment of the double quantum dot. (a–d) Sideband lineshape for weak driving in the one

electron configuration, as a function of detuning and for increasing relative powers at f¼ 31.8 GHz (data taken with different tunnel coupling and gate

voltages to Fig. 2). In the blue-detuned region (EoB70meV), phonon emission results in asymmetric broadening of the sideband and the appearance of

step-like features with a spacing (indicated by double arrows) that is set by the distance between the two quantum dots. Extracting this distance from

the spacing of the steps gives 280 nm, consistent with the micrograph shown in Fig. 1c, see Methods. In the red-detuned region (e4B70meV), the

sideband also deviates from the ideal-Lorentzian shape, exhibiting additional skirting features, which we attribute to a renormalization of the qubit levels

owing to coupling to the phononic environment. Solid lines are Lorentzian fits to the data using only data points in red region and at the top of the peak.
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amplitude of some of the experimental features (in addition to the
charge noise mechanism discussed above). These include the
anisotropy of the piezoelectric coupling, which we have neglected
in our calculations. Further, we have not considered the presence
of the surface, which modifies the phononic spectral density. For
the present device, where the double dots are located 110 nm
below the surface, constructive interference between the double-
dot dipole and its image charge couple the electrons to Rayleigh
surface acoustic waves.

We note that the ability to control the crystallographic
orientation of the double dot and its depth from the surface
offers a means of suppressing electron–phonon coupling, an
advantage of heterostructure devices. Future approaches to
suppressing the influence of the phononic environment may
include patterning the surface or shaping the gate electrodes to
induce phononic band gaps32 that extend qubit coherence in
these systems.

Methods
Device and experimental setup. The double dot is defined electrostatically,
110 nm below the surface of a GaAs/Al0.3Ga0.7As heterostructure grown using
molecular beam epitaxy (electron density 2.4� 1015 m� 2, mobility 44 m2 V� 1 s� 1

at 20 K). All data is taken at the base electron temperature of a dilution refrigerator,
TeB 100 mK, with the sample mounted on a custom high-frequency-printed cir-
cuit board33. Microwave excitation is produced using a room temperature vector
source (Agilent 8267D) and fed to the device printed circuit board via coaxial
cables that include cryogenic attenuators.

Readout is performed using an rf-QPC, proximal to the double dot. An
impedance matching tank circuit operating at a frequency of B500 MHz
transforms the high-QPC resistance towards the 50 O characteristic impedance of a
transmission line enabling the QPC to modulate the amount of reflected-rf power.
The change in reflected-rf power is amplified using cryogenic and room
temperature amplifiers and demodulated using standard-quadrature mixing
techniques to yield a baseband signal Vrf proportional to the QPC conductance. For
high resolution data (Figs 3 and 4) a high bandwidth digital storage scope is used to
perform a large number of trace averages.

Theoretical model. To compare our theoretical model to the experimental data,
we normalize each quantity with respect to the microwave-driving frequency, for
example, o*¼o/o0, where the * indicates dimensionless parameters. In this form
we can write:

J�ðo�Þ ¼ pP�o�
1� sincðd�o�Þ
1þðo�=o�c Þ

2 ; ð1Þ

where d*¼ do0/cs, with d the inter-dot separation and cs is the transverse speed of
sound. P� ¼ ‘Pð Þ2= 4p2‘m c3

s

� �
where ‘P is the piezoelectric electron–phonon

coupling strength, m is the mass density, and oc E2pcs/a is a high-frequency cutoff
determined by the exponential decay length of the localised electronic wavefunc-
tion, a. For GaAs, cs¼ 3,000 ms� 1, ‘P¼ 1.45 eV nm� 1 and m¼ 5,300 kg m� 3, so
P*¼ 0.09. For the driving frequency o0¼ 2p� 32 GHz pertinent to Fig. 4, we find
d*B20. The tunnelling rate D*¼ 0.15, and temperature T*¼ kBT/o0¼ 0.12 are
obtained independently from experimental data. We choose o�c ¼ 2, consistent
with aB50 nm.

The spectral density in equation (1) exhibits plateaus at ophoton/csB
(3/2þ 2n)p/d, that is, when the Raman phonon wavelength is commensurate with
the interdot spacing. This results in the step-like features in P(0,1) when the
detuning matches ophonon. The first step in P(0,1) occurs at a detuning of
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2p� 8 GHzBophoton¼ (3/2)pcs/d (and taking cs¼ 3,000 ms� 1), we find dB280–
300 nm, consistent with the geometry of the surface gates.
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